619 resultados para Leymus chinensis steppe


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although studies show that grazing and browsing by herbivores have marked effects on host plants, the mechanisms remain unclear. The objective of this study is to determine the effects of sheep saliva on host plant growth. Sheep saliva was manually applied to clipped plants of two different life forms, a semi-shrub, Artemisia frigida Willd., and a herbaceous species, Leymus chinensis (Trin.) Tzevel. The results showed that sheep saliva significantly enhanced aboveground net primary productivity (ANPP) and the ratio of ANPP to belowground net primary productivity (BNPP) for both species. This indicated that sheep saliva promotes aboveground compensatory growth and allocation of photosynthate to aboveground for both plant species. Sheep saliva stimulated only tillering of L. chinensis. Regardless of saliva application, clipping significantly decreased BNPP and plant height, but significantly increased the number of branches or tillers for both plant species. The relative growth rates (RGRs) on both species were significantly greater after clipping with saliva compared with control and clipping without saliva treatments. In addition, RGR of the herbaceous species L. chinensis was faster than that of the semi-shrub A. frigida after application of saliva. (c) 2006 Elsevier Ltd. All rights reserved.