910 resultados para Levels of irrigation
Resumo:
The objective of this research was to evaluate the growth of Tabebuia heptaphylla seedlings in distinct substrates with different amounts of urban waste compost and the relation between this growth and irrigation. A completely randomized experimental design was used, with a factorial arrangement of 15 substrates and 2 irrigation levels. The substrates were composed by the combination of different materials: urban waste, tanned cattle manure, vermiculite, soil and the commercial form Plantmax (R). For the study of the seedlings development, the following characteristics were evaluated: plant height, stem diameter at soil level, number of leaves, above ground dry matter, root system dry matter, relation between plant height and stem base diameter, Dickson quality index and relation between plant height and above ground dry matter. Evaluations of plant height, stem diameter at soil level and number of leaves were made at 75, 90, 105, 120, 135 and 150 days after sowing. According to the results, it was concluded that urban waste compost does not increase plant development. Significant differences in relation to the irrigation levels were found, with better results for the 150% irrigation level compared to 100% evapotranspiration.
Resumo:
Mediterranean climate is characterized by hot summer, high evapotranspiration rates, and scarce precipitations (400 mm per year) during grapevine cycle. These extremely dry conditions affect vineyard productivity and sustainability. Supplementary irrigation is a needed practice in order to maintain yield and quality. Almost all Spanish grape growing regions are characterized by these within this context, especially in the center region, where this study was performed. The main objective of this work was to study the influence of irrigation on yield and quality. For this aim, we applied different levels of irrigation (mm of water applied) during different stages of growth and berry maturity. Four experimental treatments were applied considering the amount of water and the moment of the application: T1: Water irrigation (420 mm) applied from bloom to maturity. T2: Corresponded to the traditional irrigation scheduling, from preveraison to maturity (154 mm). T3: Water irrigation from bloom to preveraison, and water deficit from veraison to maturity (312 mm). T4: Irrigation applied from preveraison to maturity (230 mm) Experimental vineyard, cv. Cabernet Sauvignon, was located in a commercial vineyard (Bodegas Licinia S.L.) in the hot region of Morata de Tajuña (Madrid). The trial was performed during 2010 and 2011 seasons. Our results showed that yield increased from 2010 to 2011 in the treatments with a higher amount of water appli ed, T1 and T3 (24 and 10 % of yield increase respectively). This was mainly due to an increase in bud fertility (nº of bunches per shoot). Furthermore, sugar content was higher in T3 (27.3 ºBrix), followed by T2 (27 ºBrix). By contrast, T4 (irrigation from veraison) presented the lowest solid soluble concentration and the highest acidity. These results suggest that grapevine has an intrinsic capacity to adapt to its environment. However, this adaptation capacity should be evaluated considering the sensibility of quality parameters during the maturity period (acidity, pH, aroma, color...) and its impact on yield. Here, we demonstrated that a higher amount of water irrigation applied was no linked to a negative effect on quality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of four irrigation levels (50; 75; 100 and 150% of the evaporation in the class A pan) and four levels of N (0,075; 0, 150; 0,225 and 0,300 kg(-1)), were evaluated on productivity and components of production of the watermelon `Charleston Gray`. The experiment was conducted under field conditions, from October/2003 to January/2004, using a randomized split-plot design, with the factor depths in plot and depths of N in split-plot. It was verified that the factors water and nitrogen presented a highly significant effect in the yield of watermelon, while the interaction among the factors was not significant. The maximum productivity of the watermelon (68.59 Mg ha(-1)) was obtained with 421 mm of water and 267 kg ha(-1) of N. The water was more efficiently used with increments in dosage of N, being the maximum value observed of 279.54 kg ha(-1) mm(-1), obtained with a depth of water of 205 mm and a depths of N of 225 kg ha(-1). The maximum efficiency of the use of the water for the nitro en was 221 kg ha(-1) mm(-1), for 249 kg ha(-1) of N. The sugar content of the watermelon, measured in degrees Brix, was affected by the depths of irrigation, depths of N and by its interactions.
Resumo:
In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.
Resumo:
The energy balance for the production of sunflower oil and cake was carried out during the agricultural and industrial stage phase, where it was considered a cold extraction by hydraulic pressing, with the plant location in a rural area with a radius of 30km range. Data on productivity was used in two varieties of sunflower (Helio 358 and Aguará 04) grown in different seasons (2007/2008, 2008/2009), under different irrigation levels. Data showed that irrigation resulted in an increase in productivity of both varieties, and the best response was observed for Aguará 04 variety. Moreover, the increased intensity of irrigation negatively affected the energy balance, reducing the ratio between energy produced and energy used in the production chain. The most significant inputs in the energy intake were fertilizer followed by diesel oil, when irrigation was not used for. When the irrigation technique was used, the most significant inputs, in order of representativeness, were: energy, fertilizer and equipment.
Resumo:
Soil water availability is the main cause of reduced productivity, and the early development period most sensitive to water deficit. This study aimed to evaluate the drought resistance of the varieties of sugar-cane RB867515 and SP81-3250 during the early development using different levels of water deficit on four soil depths. The experiment was conducted at the Department of Biosystems at Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP) in a greenhouse in soil classified as Oxisol, sandy loam texture (Series "Sertãozinho"). Once exhausted the level of available water in the soil, the dry strength of the studied strains are relatively low. Water balance with values less than -13 mm cause a significant decrease in the final population of plants, regardless of the variety, and values below -35 mm, leads to the death of all plants.
Resumo:
A study was devised to evaluate influences of irrigation and fertigation practices on Vitis vinifera and Vitis labruscana grapes in the Niagara Peninsula. A modified FAO Penman- Monteith evapotranspiration formula was used to calculate water budgets and schedule irrigations. Five deficit irrigation treatments (non-irrigated control; deficits imposed postbloom, lag phase, and veraison; fiiU season irrigation) were employed in a Chardonnay vineyard. Transpiration rate (4-7 /xg H20/cmVs) and soil moisture data demonstrated that the control and early deficit treatments were under water stress throughout the season. The fiiU season irrigation treatment showed an 18% (2001) and 19% (2002) increase in yield over control due to increased berry weight. Soluble solids and wine quality were not compromised, and the fiiU season treatment showed similar or higher °Brix than all other treatments. Berry titratable acidity andpH also fell within acceptable levels for all five treatments. Irrigation/fertigation timing trials were conducted on Concord and Niagara vines in 2001- 02. The six Concord treatments consisted of a non-irrigated control, irrigation fi^om Eichhom and Lorenz (EL) stage 12 to harvest, and four fertigation treatments which applied 70 kg/ha urea. The nine Niagara treatments included a non-irrigated control, two irrigated treatments (ceasing at veraison and harvest, respectively) and six fertigation treatments of various durations. Slight yield increases (ca. 10% in Concord; 29% in Niagara) were accompanied by small decreases in soluble solids (1.5°Brix), and methyl anthranilate concentrations. Transpiration rate and soil moisture (1 1.9-16.3%) data suggested that severe water stress was present in these Toledo clay based vineyards.
Resumo:
The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry
Resumo:
The influence of four levels (25, 50, 75 and 100%) of Class A pan evaporation replenishment (PER) on the marketable yield and bioactive amine content of American lettuce (Lactuca sativa cv Lucy Brown) grown under greenhouse conditions and drip irrigation was investigated. Lettuce was planted in 1.20 m x 2.10 m plots in a completely randomised block design with three replications. Lowest fresh head weights and diameters were obtained at 25% PER. Highest marketable yields and fresh head weights were obtained at 100% PER; however, no significant difference was observed when using 75% PER. The fresh head diameter was smaller only when using 25% PER. Four amines were detected in lettuce grown under 100% PER, with a total content of 7.60 mg kg(-1). Spermidine was the prevalent amine, followed by putrescine, cadaverine and agmatine. Higher spermidine and cadaverine levels were observed in the outer layers of leaves than in the intermediate and inner leaves. The contents of every amine except agmatine increased with water stress; however, a significant difference was observed only between 100 and 25% PER. The concentrations of accumulated putrescine were not capable of negatively affecting the sensory quality of the lettuce. (c) 2005 Society of Chemical Industry.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
Chemokines may contribute to local and systemic inflammation in patients with psoriasis. Previous studies have demonstrated the importance of chemokine ligands and receptors in the recruitment of T cells into psoriatic lesional skin and synovial fluid. The aim of this study was to evaluate the levels of Th1-related chemokines in psoriasis and to investigate any association with disease severity. We quantified serum levels of CXCL9, CXCL10 and CXCL16 and the frequencies of CD4+CXCR3+ T lymphocytes through ELISA and flow cytometry, respectively. A total of 38 patients with psoriasis and 33 controls were included. There were no significant differences in chemokine levels between psoriasis and control groups. Patients with psoriatic arthritis had lower median level of CXCL10 when compared with controls (p=0.03). There were no significant correlations between serum chemokines analyzed and disease severity. Frequencies of CD4+CXCR3+ T cells were lower in patients with psoriasis than in controls (p<0.01). A sensitivity analysis excluding patients on systemic therapy yielded similar results. Serum concentrations of CXCL9, CXCL10 and CXCL16 were not increased in the psoriasis group or correlated with disease severity. Systemic levels of chemokine ligands do not seem to be sensitive biomarkers of disease activity or accurate parameters to predict response to therapy. Frequencies of CD4+CXCR3+ T cells were decreased in the peripheral blood of psoriasis patients, possibly due to recruitment to inflammatory lesions.
Resumo:
Chest radiography (CXR) is inferior to Thin-section computed tomography in the detection of asbestos related interstitial and pleural abnormalities. It remains unclear, however, whether these limitations are large enough to impair CXR´s ability in detecting the expected reduction in the frequency of these asbestos-related abnormalities (ARA) as exposure decreases. Clinical evaluation, CXR, Thin-section CT and spirometry were obtained in 1418 miners and millers who were exposed to progressively lower airborne concentrations of asbestos. They were separated into four groups according to the type, period and measurements of exposure and/or procedures for controlling exposure: Group I (1940-1966/tremolite and chrysotile, without measurements of exposure and procedures for controlling exposure); Group II (1967-1976/chrysotile only, without measurements of exposure and procedures for controlling exposure); Group III (1977-1980/chrysotile only, initiated measurements of exposure and procedures for controlling exposure) and Group IV (after 1981/chrysotile only, implemented measurements of exposure and a comprehensive procedures for controlling exposure). In all groups, CXR suggested more frequently interstitial abnormalities and less frequently pleural plaques than observed on Thin-section CT (p<0.050). The odds for asbestosis in groups of decreasing exposure diminished to greater extent at Thin-section CT than on CXR. Lung function was reduced in subjects who had pleural plaques evident only on Thin-section CT (p<0.050). In a longitudinal evaluation of 301 subjects without interstitial and pleural abnormalities on CXR and Thin-section CT in a previous evaluation, only Thin-section CT indicated that these ARA reduced as exposure decreased. CXR compared to Thin-section CT was associated with false-positives for interstitial abnormalities and false-negatives for pleural plaques, regardless of the intensity of asbestos exposure. Also, CXR led to a substantial misinformation of the effects of the progressively lower asbestos concentrations in the occurrence of asbestos-related diseases in miners and millers.
Resumo:
This study aimed to check for any significant differences in perceived quality of life, specifically aspects of a physical nature, among volunteers who are more physically active and those less physically active in a university community. The sample consisted of 1,966 volunteers in a university community in Brazil. To assess physical activity levels, volunteers responded to the International Physical Activity Questionnaire (IPAQ), and to analyse the perception of quality of life they responded to WHOQOL-bref, which is classified into three groups according to level of physical activity, taking into account the metabolic equivalent index (MET) over a full week. For comparison, consideration was given to the first and third tertiles, respectively, namely groups of more and less active students. The results indicated that individuals who engaged in more physical activity had a more positive perception of quality of life compared to those who were less active in physical aspects related to the ability to work, energy for day-to-day activities and locomotion.