3 resultados para Leposternon Microcephalum


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphisbaenians are legless reptiles that differ significantly from other vertebrate lineages. Most species dig underground galleries of similar diameter to that of the animal. We studied the muscle physiology and morphological attributes of digging effort in the Brazilian amphisbaenid Leposternon microcephalum (Squamata; Amphisbaenia), which burrows by compressing soil against the upper wall of the tunnel by means of upward strokes of the head. The individuals tested (<72 g) exerted forces on the soil of up to 24 N. These forces were possible because the fibres of the longissimus dorsi, the main muscle associated with burrowing, are highly pennated, thus increasing effective muscle cross-sectional area. The muscle is characterized by a metabolic transition along its length: proximal, medial and distal fibres are fast contracting and moderately oxidative, but fibres closer to the head are richer in citrate synthase and more aerobic in nature. Distal fibres, then, might be active mainly at the final step of the compression stroke, which requires more power. For animals greater than a given diameter, the work required to compress soil increases exponentially with body diameter. Leposternon microcephalum, and probably some other highly specialized amphisbaenids, are most likely constrained to small diameters and can increase muscle mass and effective muscle cross-sectional area by increasing body length, not body diameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphisbaenians are legless reptiles that differ significantly from other vertebrate lineages. Most species dig underground galleries of similar diameter to that of the animal. We studied the muscle physiology and morphological attributes of digging effort in the Brazilian amphisbaenid Leposternon microcephalum (Squamata; Amphisbaenia), which burrows by compressing soil against the upper wall of the tunnel by means of upward strokes of the head. The individuals tested (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the information currently available on the reproduction of the Amphisbaenia and provide original data on the reproductive biology of four Neotropical species: Amphisbaena alba; A. mertensi; Cercolophia roberti, and Leposternon infraorbitale. In total, we compiled data for 22 species: 17 Amphisbaenidae, 1 Rhineuridae, 3 Bipedidae, and 1 Trogonophidae. The majority of the species were oviparous with the exceptions of Loveridgea ionidesii, Monopeltis anchietae, M. capensis, and Trogonophis wiegmanni. Viviparity was interpreted as a derived trait that evolved independently for at least 3 times within the Amphisbaenia. In most species, reproduction is synchronized with the hot and rainy season and seems to vary with latitude. Although Amphisbaenia eggs have been found in ant nests, it remains disputable whether this is an obligatory or even a preferable location for egg-laying. Incubation time in A. mertensii lasts 59 days and this is the first report encompassing egg-laying to hatching for any Amphisbaenia species. Nonetheless, a two months incubation period seems to be the common rule for oviparous Amphisbaenia. The general pattern of reproductive output in Amphisbaenia is characterized by a low number of eggs/embryos per clutch whose individual size is comparatively large in relation to adult body size. Eggs are markedly elongated on the long axis and arranged in-line within the abdominal cavity possibly to prevent/diminish biomechanic drawbacks of egg bearing. Hatchlings of A. mertensi possess an egg-tooth implanted at the upper jaw, exhibit positive geotropism, and display defensive behaviors known to be present in adults. Our review shows that our current knowledge of Amphisbaenia reproduction is fragmentary, often based on the examination of small samples, and heavily dependent on the publication of anedoctal observations. Future publications on this subject are encouraged.