981 resultados para Lei zero da termodinâmica
Resumo:
Apresenta a definição e revisão de alguns conceitos básicos sobre termodinâmica aplicada: sistema termodinâmico e volume de controle, exemplo de sistemas abertos, fechados, isolados e volume de controle; estado e propriedades de uma substância – fases (sólida, líquida ou gasosa), propriedades termodinâmicas extensivas e intensivas com apresentação de exemplos, definição de propriedade específica; Equilíbrio termodinâmico, processos e ciclos; energia potencial, cinética e interna; definições de calor e trabalho; lei da conservação da energia; definição e exemplo de cálculo de pressão; pressão manométrica, pressão absoluta, pressão manométrica; temperatura, lei zero da termodinâmica, equilíbrio térmico; descrição das unidades das grandezas físicas envolvidas nos processos – Sistema Internacional de Unidades (SI).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Considering intrinsic characteristics of the system exclusively, both statistical and information theory interpretations of the second law are used to provide more comprehensive meanings for the concepts of entropy, temperature, and Helmholtz and Gibbs energies. The coherence of Clausius inequality to these concepts is emphasized. The aim of this work is to re-discuss the second law of thermodynamics in accordance to homogeneous processes thermodynamics, a temporal science which is the very special oversimplification of continuum mechanics for spatially constant intensive properties.
Resumo:
This paper deals with Carathédory's formulation of the second law of thermodynamics. The material is presented in a didatical way, which allows a second year undergraduate student to follow the formalism. An application is made to an ideal gas with two independent variables. A criticism to Carnot formulation of the second law and an investigation of the historical origins of the Carathéodory formalism are also presented.
Resumo:
Entropy is a concept that has long stimulated human curiosity, resulting in an huge intelectual production. The same has not occurred for the first law of thermodynamics, perhaps because of its apparent obviousness. In this article the first law presentation, as displayed in most traditional physical chemistry textbooks, is criticized. An alternative view is suggested, in accordance with temporal thermodynamics. The time derivative local form of the second law is used to stress the entropy concept implications on the notion of internal energy.
Resumo:
The classical interpretations of Nicolas Léonard Sadi Carnot on some physical principles involved in the operation of heat engines were fundamental to the development and formulation of the Second Law of Thermodynamics. Moreover, an accurate historical survey clearly reveals that Carnot was, by that time, also well aware about some new concepts, which were further worked out by other scientists to lead to what was, some time later, known as the mechanical equivalent of heat and the conservation of energy. Benoit Paul Émile Clapeyron recognized these original concepts in the first of Carnot´s monographs, published in 1824, but no explicit citation is found in any post-Carnot classical texts dealing with the First Law of Thermodynamics, including those by Julius Robert Mayer, James Prescott Joule and Hermann Ludwig Ferdinand von Helmholtz. The main objective of the present work is to point out some historical evidences of the pioneering contribution of Carnot to the modern concept of the First Law of Thermodynamics.
Resumo:
We treat some subtleties concerning the First Law of Thermodynamics and discuss the inherent difficulties, namely the interpretation of the heat and the work differentials. By proposing a new differential equation for the First Law, which is written using both system and neighborhood variables, we overcome the mentioned difficulties and establish a criterion for the definition of heat and work.
Resumo:
Thermodynamics of homogeneous processes, which corresponds to the very special situation in thermodynamics of continuous media, is used to discuss the first law. An important part of this work is the exposition of some typical mathematical errors, frequently found in the traditional presentation of thermodynamics. The concepts of state and process functions are discussed, as well as reverse and reversible processes, temporality and its implications on thermodynamics, energy reservoirs and symmetry. Our proposal is to present the first law by using a time dependent viewpoint coherent with mechanics and the foundations of that viewpoint.
Resumo:
Considering intrinsic characteristics of the system exclusively, both statistical and information theory interpretations of the second law are used to provide more comprehensive meanings for the concepts of entropy, temperature, and Helmholtz and Gibbs energies. The coherence of Clausius inequality to these concepts is emphasized. The aim of this work is to re-discuss the second law of thermodynamics in accordance to homogeneous processes thermodynamics, a temporal science which is the very special oversimplification of continuum mechanics for spatially constant intensive properties.
Resumo:
Unidade 2
Resumo:
Apresenta os dois enunciados mais importantes da segunda lei da termodinâmica. Apresenta as máquinas térmicas, dispositivos que produzem trabalho a partir de calor em processo cíclico, citando exemplo. Apresenta refrigeradores térmicos simples, que funcionam como aquecedores quando invertidos. Apresenta o ciclo de Carnot, definindo e equacionando as quatro etapas e ilustrando em um diagrama.
Resumo:
Apresenta entropia por meio da desigualdade de Clausius, demonstrando essa desigualdade para máquinas térmicas e ciclos de refrigeração, concluindo que a igualdade se aplica a ciclos reversíveis e a desigualdade a ciclos irreversíveis. Define entropia como uma propriedade termodinâmica extensiva, e apresenta as equações para calcular a entropia. Apresenta o diagrama TS, faz a representação de um ciclo termodinâmico e do ciclo de Carnot nesse diagrama. Apresenta equações para cálculo de eficiência máquinas térmicas e rendimento de refrigeradores. Apresenta considerações de entropia para gases ideais.
Resumo:
Apresenta algumas observações experimentais que fornecem embasamento para a segunda lei da termodinâmica, os enunciados de Clausius e Kelvin-Planck. Demonstra através de esquemas o princípio de funcionamento das máquinas térmicas e dos refrigeradores, das máquinas ideais (descrição do ciclo de Carnot) e a representação dos ciclos de potência e de refrigeração num diagrama p-v. Avalia o rendimento de máquinas térmicas ideais. Posteriormente, define o conceito de entropia e suas aplicações, como calcular variações desta propriedade termodinâmica em diferentes processos, em líquidos, sólidos e gases ideais.