954 resultados para Leg Muscles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to compare the torque, torque ratio (Hamstrings:Quadriceps - H:Q), electromyographic (EMG) activity and EMG ratio (knee flexors:knee extensors EMG) in soccer players (SG, N=10) and active subjects (AG, N=10). Subjects performed three maximal voluntary isometric knee extensions and flexions at 45° and 90° to determine the peak torque and EMG activity. Torque and EMG activity of the knee flexor (biceps femoris [BF] and semitendinosus [ST]) were divided by the torque and EMG activity of the knee extensor (vastuls lateralis [VL] and rectus femoris [RF]) to calculate torque ratios (H:Q) and EMG ratios (BF:VL, BF:RF, ST:VL, ST:RF). The flexion torque was significantly higher for SG (p<0.05) in 45° and 90°. EMG activity for SG was significantly higher in agonist contractions for VL, RF and ST, and significantly lower in antagonist contractions for RF and ST when compared to AG Torque and EMG ratios were similar between groups and there were good correlations between torque ratio and BF:VL ratio (r=0.71, p=0.02) and BF:RF ratio (r=0.81, p=0.004) at 45. The EMG results could overestimate the joint balance calculated using torque ratios. Differences in recruitment pattern between soccer players and non-athletes can be related to the training routines and the EMG ratios presents applicable in trained populations.
Resumo:
Whole body vibration (WBV) aims to mechanically activate muscles by eliciting stretch reflexes. Mechanical vibrations are usually transmitted to the patient body standing on a oscillating plate. WBV is now more and more utilized not only for fitness but also in physical therapy, rehabilitation and in sport medicine. Effects depend on intensity, direction and frequency of vibration; however, the training frequency is one of the most important factors involved. A preliminary vibratory session can be dedicated to find the best vibration frequency for each subject by varying, stepwise, the stimulation frequency and analyzing the resulting EMG activity. This study concentrates on the analysis of muscle motion in response to a vibration frequency sweep, while subjects held two different postures. The frequency of a vibrating platform was increased linearly from 10 to 60 Hz in 26 s, while platform and single muscles (Rectus Femoris, Biceps Femoris - long head and Gastrocnemius Lateralis) motions were monitored using tiny, lightweight three-axial MEMS accelerometers. Displacements were estimated integrating twice the acceleration data after gravity contribution removal. Mechanical frequency response (amplitude and phase) of the mechanical chains ending at the single muscles was characterized. Results revealed a mechanical resonant-like behavior at some muscles, very similar to a second-order system in the frequency interval explored; resonance frequencies and dumping factors depended on subject and its positioning onto the vibrating platform. Stimulation at the resonant frequency maximizes muscle lengthening, and in turn muscle spindle solicitation, which produce muscle activation. © 2009 Springer-Verlag.
Resumo:
The crosstalk phenomenon consists in recording the volume-conducted electromyographic activity of muscles other than that under study. This interference may impair the correct interpretation of the results in a variety of experiments. A new protocol is presented here for crosstalk assessment between two muscles based on changes in their electrical activity following a reflex discharge in one of the muscles in response to nerve stimulation. A reflex compound muscle action potential (H-reflex) was used to induce a silent period in the muscle that causes the crosstalk, called here the remote muscle. The rationale is that if the activity recorded in the target muscle is influenced by a distant source (the remote muscle) a silent period observed in the electromyogram (EMG) of the remote muscle would coincide with a decrease in the EMG activity of the target muscle. The new crosstalk index is evaluated based on the root mean square (RMS) values of the EMGs obtained in two distinct periods (background EMG and silent period) of both the remote and the target muscles. In the present work the application focused on the estimation of the degree of crosstalk from the soleus muscle to the tibialis anterior muscle during quiet stance. However, the technique may be extended to other pairs of muscles provided a silent period may be evoked in one of them. (C) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.
Resumo:
This study analyzes the capillarity and fibre-type distribution of six locomotory muscles of gulls. The morphological basis and the oxygen supply characteristics of the skeletal muscle of a species with a marked pattern of gliding flight are established, thus contributing to a better understanding of the physiology of a kind of flight with low energetic requirements. The four wing muscles studied (scapulotriceps, pectoralis, scapulohumeralis, and extensor metacarpi) exhibited higher percentages of fast oxidative glycolytic fibres (>70%) and lower percentages of slow oxidative fibres (<16%) than the muscles involved in nonflight locomotion (gastrocnemius and iliotibialis). Capillary densities ranged from 816 to 1,233 capillaries mm(-2), having the highest value in the pectoralis. In this muscle, the fast oxidative glycolytic fibres had moderate staining for succinate dehydrogenase and relatively large fibre sizes, as deduced from the low fibre densities (589-665 fibres mm(-2)). All these findings are seen as an adaptive response for gliding, when the wing is held outstretched by isometric contractions. The leg muscles studied included a considerable population of slow oxidative fibres (>14% in many regions), which suggests that they are adapted to postural activities. Regional variations in the relative distributions of fibre types in muscle gastrocnemius may reflect different functional demands placed on this muscle during terrestrial and aquatic locomotion. The predominance of oxidative fibres and capillary densities under 1,000 capillaries mm(-2) in leg muscles is probably a consequence of an adaptation for slow swimming and maintenance of the posture on land rather than for other locomotory capabilities, such as endurance or sprint activities.
Resumo:
Introduction: Les stratégies d’optimisation de la performance chez les athlètes sont de plus en plus exploitées par les entraîneurs et préparateurs physiques. La potentialisation de post- activation (PAP) est reconnue comme étant un phénomène pouvant mener à une augmentation des performances. L’objectif de la présente étude était de donc décrire les effets d’une pré-sollicitation à la hanche sur la coordination inter-musculaire et la performance au cours d’un exercice épuisant. Méthodes: Six athlètes de patins de vitesse de courte piste (3 de sexe masculin et 3 de sexe féminin; âge: 20.2 ± 2.8 ans; moyenne±écart-type) ont exécuté aléatoirement un exercice qui consistait en 2 séries de 9 blocs de squats sautés maximaux, entre-coupés d’un squat isométrique d’une durée de 5 secondes sans pré-sollicitation préalable (CON) et avec une tâche de pré-sollicitation unilatérale de squat isométrique (EXP) contre une barre fixe de 2x3 secondes. Le pic de puissance moyen, l’amplitude et la fréquence moyenne d’EMG, et la vitesse et l’accélération angulaires des premiers et derniers blocs étaient enregistrés. Résultats: La pré-sollicitation isométrique maximale des membres inférieurs n’a pas amélioré de manière significative la performance de sauts et la coordination des muscles stabilisateurs à la hanche. La fréquence spectrale moyenne a néanmoins témoigné de l’implication de stratégies compensatoires du membre inférieur gauche en réponse à la fatigue. Conclusion: La pré-sollicitation des stabilisateurs à la hanche n’augmenterait pas la performance de squats répétés. Par contre, la fréquence moyenne du grand fessier et du tibial antérieur gauche ont suggéré meilleure résistance à la fatigue des muscles du membre inférieur non-dominant avec une pré-sollicitation. Les résultats de la présente étude indiquent donc la pertinence de considérer la pré-sollicitation dans un objectif de performance et de réadaptation sachant que l’asymétrie est omniprésente chez les athlètes et qu’elle est impliquée dans le taux élevé de blessures enregistré chez cette population.
Resumo:
This experiment evaluated the growth of breast and leg muscle fibers of domestic fowl raised in two enclosure sizes (SE: Small Enclosure, 1.125 m2/10 birds; LE: Large Enclosure, 5.25 m2/10 birds). In breast muscles, the number of fibers per area decreased over time and higher values were observed in broilers housed in SE compared to LE. The fiber size increased with age and was greater in LE than SE at 56 days of age, suggesting greater hypertrophic growth of fibers in breast muscle for broilers maintained in LE. In leg muscles, the muscle cross-sectional area was greater for broilers raised in LE than SE at 56 days of age and decreased from 42 to 56 days of age in broilers raised in SE, suggesting leg muscle atrophy in these birds. The Fast Glycolytic (FG), Fast Oxidative-Glycolytic (FOG) and Slow Oxidative (SO) fibers grew until 42 days of age in both enclosure sizes. The area of FOG fibers was greater in broilers raised in LE than those in SE at 28 and 56 days of age; in LE-raised broilers, the SO area was greater at 28, 42 and 56 days of age, suggesting that the muscles of broilers housed in LE are more oxidative. The BW gain was greater for broilers raised in LE than SE, whereas BW, feed intake and feed conversion were not influenced by enclosure size. Thus, the enclosure space affected hypertrophic growth and metabolic characteristics of breast and leg muscle fibers. © Asian Network for Scientific Information, 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In order to evaluate the effects of uncertainty about direction of mechanical perturbation and supra-postural task constraint on postural control young adults had their upright stance perturbed while holding a tray in a horizontal position Stance was perturbed by moving forward or backward a supporting platform contrasting situations of certainty versus uncertainty of direction of displacement Increased constraint on postural stability was Imposed by a supra-postural task of equilibrating a cylinder on the tray Performance was assessed through EMG of anterior leg muscles angular displacement of the main Joints involved in the postural reactions and displacement of the tray Results showed that both certainty on the direction of perturbation and Increased supra-postural task constraint led to decreased angular displacement of the knee and the hip Furthermore combination of certainty and high supra-postural task constraint produced shorter latency of muscular activation Such postural responses were paralleled by decreased displacement of the tray Thesi results suggest a functional integration between the tasks with central set priming reactive postural responses from contextual cues and Increased stability demand (C) 2010 Elsevier B V All rights reserved
Resumo:
Although physical activity is recommended in patients on maintenance hemodialysis (MHD), randomized controlled trials testing the effects of exercise in this population have given conflicting results. In general, aerobic exercises mostly failed to produce improvements in physical function, whereas resistance exercises, although less studied, appeared to be more promising. The use of sophisticated materials such as leg press and free weights may preclude widespread application of resistance training in patients on MHD. Simple and cheap elastic bands may thus be an attractive alternative. We tested the feasibility of a supervised intradialytic resistance band exercise training program, and its effects on physical function, in patients on MHD. A total of 11 unselected adult patients on MHD from our center, aged 70 ± 10.7 (mean ± standard deviation) years, including 8 men and 3 women, accepted to follow the program under the supervision of qualified physiotherapists. Thirty-six exercise sessions of moderate intensity (twice a week, mean duration 40 minutes each, during 4.5 to 6 months), mainly involving leg muscles against an elastic resistance, were performed. The exercise program was well tolerated and all patients completed it. Statistically significant improvements were observed in the following tests: Tinetti test, 23.9 ± 3.9 points before versus 25.7 ± 3.5 points after the program (P = .022); the Timed Up and Go test, 12.1 ± 6.6 versus 10 ± 5.8 seconds (P = .0156). Improvements in the 6-minute walk distance and in the one-leg balance tests just failed to reach statistical significance. In this single-center pilot study, an intradialytic resistance band exercise program was feasible, well tolerated, and showed encouraging results on physical function.
Resumo:
The effect of motor training using closed loop controlled Functional Electrical Stimulation (FES) on motor performance was studied in 5 spinal cord injured (SCI) volunteers. The subjects trained 2 to 3 times a week during 2 months on a newly developed rehabilitation robot (MotionMaker?). The FES induced muscle force could be adequately adjusted throughout the programmed exercises by the way of a closed loop control of the stimulation currents. The software of the MotionMaker? allowed spasms to be detected accurately and managed in a way to prevent any harm to the SCI persons. Subjects with incomplete SCI reported an increased proprioceptive awareness for motion and were able to achieve a better voluntary activation of their leg muscles during controlled FES. At the end of the training, the voluntary force of the 4 incomplete SCI patients was found increased by 388% on their most affected leg and by 193% on the other leg. Active mobilisation with controlled FES seems to be effective in improving motor function in SCI persons by increasing the sensory input to neuronal circuits involved in motor control as well as by increasing muscle strength.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Resumo:
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.
Resumo:
BACKGROUND: Studies have recently focused on the effect of running a mountain ultra-marathon (MUM) and their results show muscular inflammation, damage and force loss. However, the link between peripheral oedema and muscle force loss is not really established. We tested the hypothesis that, after a MUM, lower leg muscles' swelling could be associated with muscle force loss. The knee extensor (KE) and the plantar flexor (PF) muscles' contractile function was measured by supramaximal electrical stimulations, potentiated low- and high-frequency doublets (PS10 and PS100) of the KE and the PF were measured by transcutaneous electrical nerve stimulation and bioimpedance was used to assess body composition in the runners (n = 11) before (Pre) and after (Post) the MUM and compared with the controls (n = 8). RESULTS: The maximal voluntary contraction of the KE and the PF significantly decreased by 20 % Post-MUM in the runners. Hydration of the non-fat mass (NF-Hyd) and extracellular water volume (Ve) were increased by 12 % Post-MUM (p < 0.001) in the runners. Calf circumference (+2 %, p < 0.05) was also increased. Significant relationships were found for percentage increases in Ve and NF-Hyd with percentage decrease in PS10 of the PF (r = -0.68 and r = -0.70, p < 0.05) and with percentage increase of calf circumference (r = 0.72 and r = 0.73, p < 0.05) in the runners. CONCLUSIONS: The present study suggests that increases in circumference and in hydric volume are associated to contractile impairment in the calf in ultra-marathon runners.