908 resultados para Left ventricular ejection fraction
Resumo:
Objectives: This study sought to investigate the effect of a multiple micronutrient supplement on left ventricular ejection fraction (LVEF) in patients with heart failure. Background: Observational studies suggest that patients with heart failure have reduced intake and lower concentrations of a number of micronutrients. However, there have been very few intervention studies investigating the effect of micronutrient supplementation in patients with heart failure. Methods: This was a randomized, double-blind, placebo-controlled, parallel-group study involving 74 patients with chronic stable heart failure that compared multiple micronutrient supplementation taken once daily versus placebo for 12 months. The primary endpoint was LVEF assessed by cardiovascular magnetic resonance imaging or 3-dimensional echocardiography. Secondary endpoints were Minnesota Living With Heart Failure Questionnaire score, 6-min walk test distance, blood concentrations of N-terminal prohormone of brain natriuretic peptide, C-reactive protein, tumor necrosis factor alpha, interleukin-6, interleukin-10, and urinary levels of 8-iso-prostaglandin F2 alpha. Results: Blood concentrations of a number of micronutrients increased significantly in the micronutrient supplement group, indicating excellent compliance with the intervention. There was no significant difference in mean LVEF at 12 months between treatment groups after adjusting for baseline (mean difference: 1.6%, 95% confidence interval: -2.6 to 5.8, p = 0.441). There was also no significant difference in any of the secondary endpoints at 12 months between treatment groups. Conclusions: This study provides no evidence to support the routine treatment of patients with chronic stable heart failure with a multiple micronutrient supplement. (Micronutrient Supplementation in Patients With Heart Failure [MINT-HF]; NCT01005303).
Resumo:
Introduction Reduced left ventricular function in patients with severe symptomatic valvular aortic stenosis is associated with impaired clinical outcome in patients undergoing surgical aortic valve replacement (SAVR). Transcatheter Aortic Valve Implantation (TAVI) has been shown non-inferior to SAVR in high-risk patients with respect to mortality and may result in faster left ventricular recovery. Methods We investigated clinical outcomes of high-risk patients with severe aortic stenosis undergoing medical treatment (n = 71) or TAVI (n = 256) stratified by left ventricular ejection fraction (LVEF) in a prospective single center registry. Results Twenty-five patients (35%) among the medical cohort were found to have an LVEF≤30% (mean 26.7±4.1%) and 37 patients (14%) among the TAVI patients (mean 25.2±4.4%). Estimated peri-interventional risk as assessed by logistic EuroSCORE was significantly higher in patients with severely impaired LVEF as compared to patients with LVEF>30% (medical/TAVI 38.5±13.8%/40.6±16.4% versus medical/TAVI 22.5±10.8%/22.1±12.8%, p <0.001). In patients undergoing TAVI, there was no significant difference in the combined endpoint of death, myocardial infarction, major stroke, life-threatening bleeding, major access-site complications, valvular re-intervention, or renal failure at 30 days between the two groups (21.0% versus 27.0%, p = 0.40). After TAVI, patients with LVEF≤30% experienced a rapid improvement in LVEF (from 25±4% to 34±10% at discharge, p = 0.002) associated with improved NYHA functional class at 30 days (decrease ≥1 NYHA class in 95%). During long-term follow-up no difference in survival was observed in patients undergoing TAVI irrespective of baseline LVEF (p = 0.29), whereas there was a significantly higher mortality in medically treated patients with severely reduced LVEF (log rank p = 0.001). Conclusion TAVI in patients with severely reduced left ventricular function may be performed safely and is associated with rapid recovery of systolic left ventricular function and heart failure symptoms.
Resumo:
The aim of this study was to evaluate whether a change of left ventricular ejection fraction (LVEF) depending on percentage of right ventricular pacing is found in a real-life setting of a pacemaker clinic.
Resumo:
Chronic β-blocker treatment improves survival and left ventricular ejection fraction (LVEF) in patients with systolic heart failure (HF). Data on whether the improvement in LVEF after β-blocker therapy is sustained for a long term or whether there is a loss in LVEF after an initial gain is not known. Our study sought to determine the prevalence and prognostic role of secondary decline in LVEF in chronic systolic HF patients on β-blocker therapy and characterize these patients. Retrospective chart review of HF hospitalizations fulfilling Framingham Criteria was performed at the MEDVAMC between April 2000 and June 2006. Follow up vital status and recurrent hospitalizations were ascertained until May 2010. Three groups of patients were identified based on LVEF response to beta blockers; group A with secondary decline in LVEF following an initial increase, group B with progressive increase in LVEF and group C with progressive decline in LVEF. Covariate adjusted Cox proportional hazard models were used to examine differences in heart failure re-hospitalizations and all cause mortality between the groups. Twenty five percent (n=27) of patients had a secondary decline in LVEF following an initial gain. The baseline, peak and final LVEF in this group were 27.6±12%, 40.1±14% and 27.4±13% respectively. The mean nadir LVEF after decline was 27.4±13% and this decline occurred at a mean interval of 2.8±1.9 years from the day of beta blocker initiation. These patients were older, more likely to be whites, had advanced heart failure (NYHA class III/IV) more due to a non ischemic etiology compared to groups B & C. They were also more likely to be treated with metoprolol (p=0.03) compared to the other two groups. No significant differences were observed in combined risk of all cause mortality and HF re-hospitalization [hazard ratio 0.80, 95% CI 0.47 to 1.38, p=0.42]. No significant difference was observed in survival estimates between the groups. In conclusion, a late decline in LVEF does occur in a significant proportion of heart failure patients treated with beta blockers, more so in patients treated with metoprolol.^
Resumo:
Background: Monocytes are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Little is known about the role of the three phenotypically and functionally different monocyte subpopulations in determining ventricular remodelling following ST elevation myocardial infarction (STEMI). Mon1 are the ‘classical’ monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. Method: STEMI patients (n=196, mean age 62±13 years; 72% male) treated with percutaneous revascularization were recruited within the first 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3) cells. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess ventricular volumes, mass, systolic, and diastolic functions as well as strain and strain rate. Results: Using linear regression analysis higher counts for Mon1, and lower counts for Mon2 and Mon3 were significantly associated with the baseline left ventricular ejection fraction (LVEF) within 7 days post infarct (table 1). At 6 months post STEMI lower counts of Mon2 remained positively associated with a decrease in LVEF at completion of remodelling (p=0.002). Conclusion: Peripheral monocytes of all three subsets correlate with LVEF after a myocardial infarction. High counts of the inflammatory Mon1 are associated with the reduced baseline ejection fraction post infarction. After remodelling, the convalescent ejection fraction was independently predicted by monocyte subpopulation 2. As lower counts depicted negative ventricular remodelling, this suggests a possible myofibroblast deposition and angiogenesis role for the newly described intermediate monocyte subpopulation Mon2 as opposed to the previously anticipated inflammatory role.
Resumo:
AIMS: Estimates of the left ventricular ejection fraction (LVEF) in patients with life-threatening ventricular arrhythmias related to coronary artery disease (CAD) have rarely been reported despite it has become the basis for determining patient's eligibility for prophylactic defibrillator. We aimed to determine the extent and distribution of reduced LVEF in patients with sustained ventricular tachycardia or ventricular fibrillation. METHODS AND RESULTS: 252 patients admitted for ventricular arrhythmia related to CAD were included: 149 had acute myocardial infarction (MI) (Group I, 59%), 54 had significant chronic obstructive CAD suggestive of an ischaemic arrhythmic trigger (Group II, 21%) and 49 patients had an old MI without residual ischaemia (Group III, 19%). 34% of the patients with scar-related arrhythmias had an LVEF > or =40%. Based on pre-event LVEF evaluation, it can be estimated that less than one quarter of the whole study population had a known chronic MI with severely reduced LVEF. In Group III, the proportion of inferior MI was significantly higher than anterior MI (81 vs. 19%; absolute difference, -62; 95% confidence interval, -45 to -79; P < or = 0.0001), though median LVEF was higher in inferior MI (0.37 +/- 10 vs. 0.29 +/- 10; P = 0.0499). CONCLUSION: Patients included in defibrillator trials represent only a minority of the patients at risk of sudden cardiac death. By applying the current risk stratification strategy based on LVEF, more than one third of the patients with old MI would not have qualified for a prophylactic defibrillator. Our study also suggests that inferior scars may be more prone to ventricular arrhythmia compared to anterior scars.
Resumo:
BACKGROUND: The impact of preoperative impaired left ventricular ejection fraction (EF) in octogenarians following coronary bypass surgery on short-term survival was evaluated in this study. METHODS: A total of 147 octogenarians (mean age 82.1 ± 1.9 years) with coronary artery diseases underwent elective coronary artery bypass graft between January 2000 and December 2009. Patients were stratified into: Group I (n = 59) with EF >50%, Group II (n = 59) with 50% > EF >30% and in Group III (n = 29) with 30% > EF. RESULTS: There was no difference among the three groups regarding incidence of COPD, renal failure, congestive heart failure, diabetes, and preoperative cerebrovascular events. Postoperative atrial fibrillation was the sole independent predictive factor for in-hospital mortality (odds ratio (OR), 18.1); this was 8.5% in Group I, 15.3% in Group II and 10.3% in Group III. Independent predictive factors for mortality during follow up were: decrease of EF during follow-up for more that 5% (OR, 5.2), usage of left internal mammary artery as free graft (OR, 18.1), and EF in follow-up lower than 40% (OR, 4.8). CONCLUSIONS: The results herein suggest acceptable in-hospital as well short-term mortality in octogenarians with impaired EF following coronary artery bypass grafting (CABG) and are comparable to recent literature where the mortality of younger patients was up to 15% and short-term mortality up to 40%, respectively. Accordingly, we can also state that in an octogenarian cohort with impaired EF, CABG is a viable treatment with acceptable mortality.
Resumo:
Aims: To assess whether contractile reserve during dobutamine stress echocardiography (DSE) can predict left ventricular functional recovery in patients with peripartum cardiomyopathy and to assess myocardial fibrosis by magnetic resonance imaging (MRI) in these patients. Methods: Nine patients with peripartum cardiomyopathy were enrolled. All patients underwent DSE and were followed for six months, when a rest Doppler echocardiogram was repeated. MRI was also performed at the beginning of follow-up to identify myocardial fibrosis. Results: Mean age was 29 +/- 7.9 years and mean left ventricular ejection fraction at baseline was 39.4 +/- 8.6% (range 24-49%). Eight of the nine patients showed left ventricular functional recovery with mean ejection fraction at follow-up of 57.1 +/- 13.8%. The ejection fraction response to DSE did not predict recovery at follow-up. On the other hand, left ventricular ejection fraction at baseline correlated with ejection fraction at follow-up. Mild fibrosis was detected in only one patient. Conclusion: Left ventricular ejection fraction at baseline was a predictor of left ventricular functional recovery in patients with peripartum cardiomyopathy. Dobutamine stress echocardiography at presentation of the disease did not predict recovery at follow-up. Myocardial fibrosis appeared to be uncommon in this cardiomyopathy. (C) 2011 Sociedade Portuguesa de Cardiologia Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Background— The age, creatinine, and ejection fraction (ACEF) score (age/left ventricular ejection fraction+1 if creatinine >2.0 mg/dL) has been established as an effective predictor of clinical outcomes in patients undergoing elective coronary artery bypass surgery; however, its utility in “all-comer” patients undergoing percutaneous coronary intervention is yet unexplored. Methods and Results— The ACEF score was calculated for 1208 of the 1707 patients enrolled in the LEADERS trial. Post hoc analysis was performed by stratifying clinical outcomes at the 1-year follow-up according to ACEF score tertiles: ACEFlow ≤1.0225, 1.0225< ACEFmid ≤1.277, and ACEFhigh >1.277. At 1-year follow-up, there was a significantly lower number of patients with major adverse cardiac event–free survival in the highest tertile of the ACEF score (ACEFlow=92.1%, ACEFmid=89.5%, and ACEFhigh=86.1%; P=0.0218). Cardiac death was less frequent in ACEFlow than in ACEFmid and ACEFhigh (0.7% vs 2.2% vs 4.5%; hazard ratio=2.22, P=0.002) patients. Rates of myocardial infarction were significantly higher in patients with a high ACEF score (6.7% for ACEFhigh vs 5.2% for ACEFmid and 2.5% for ACEFlow; hazard ratio=1.6, P=0.006). Clinically driven target-vessel revascularization also tended to be higher in the ACEFhigh group, but the difference among the 3 groups did not reach statistical significance. The rate of composite definite, possible, and probable stent thrombosis was also higher in the ACEFhigh group (ACEFlow=1.2%, ACEFmid=3.5%, and ACEFhigh=6.2%; hazard ratio=2.04, P<0.001). Conclusions— ACEF score may be a simple way to stratify risk of events in patients treated with percutaneous coronary intervention with respect to mortality and risk of myocardial infarction.
Resumo:
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is remarkably common in elderly people with highly prevalent comorbid conditions. Despite its increasing in prevalence, there is no evidence-based effective therapy for HFpEF. We sought to evaluate whether inspiratory muscle training (IMT) improves exercise capacity, as well as left ventricular diastolic function, biomarker profile and quality of life (QoL) in patients with advanced HFpEF and nonreduced maximal inspiratory pressure (MIP). DESIGN AND METHODS A total of 26 patients with HFpEF (median (interquartile range) age, peak exercise oxygen uptake (peak VO2) and left ventricular ejection fraction of 73 years (66-76), 10 ml/min/kg (7.6-10.5) and 72% (65-77), respectively) were randomized to receive a 12-week programme of IMT plus standard care vs. standard care alone. The primary endpoint of the study was evaluated by positive changes in cardiopulmonary exercise parameters and distance walked in 6 minutes (6MWT). Secondary endpoints were changes in QoL, echocardiogram parameters of diastolic function, and prognostic biomarkers. RESULTS The IMT group improved significantly their MIP (p < 0.001), peak VO2 (p < 0.001), exercise oxygen uptake at anaerobic threshold (p = 0.001), ventilatory efficiency (p = 0.007), metabolic equivalents (p < 0,001), 6MWT (p < 0.001), and QoL (p = 0.037) as compared to the control group. No changes on diastolic function parameters or biomarkers levels were observed between both groups. CONCLUSIONS In HFpEF patients with low aerobic capacity and non-reduced MIP, IMT was associated with marked improvement in exercise capacity and QoL.
Resumo:
BACKGROUND Up to 1 in 6 patients undergoing transcatheter aortic valve implantation (TAVI) present with low-ejection fraction, low-gradient (LEF-LG) severe aortic stenosis and concomitant relevant mitral regurgitation (MR) is present in 30% to 55% of these patients. The effect of MR on clinical outcomes of LEF-LG patients undergoing TAVI is unknown. METHODS AND RESULTS Of 606 consecutive patients undergoing TAVI, 113 (18.7%) patients with LEF-LG severe aortic stenosis (mean gradient ≤40 mm Hg, aortic valve area <1.0 cm(2), left ventricular ejection fraction <50%) were analyzed. LEF-LG patients were dichotomized into ≤mild MR (n=52) and ≥moderate MR (n=61). Primary end point was all-cause mortality at 1 year. No differences in mortality were observed at 30 days (P=0.76). At 1 year, LEF-LG patients with ≥moderate MR had an adjusted 3-fold higher rate of all-cause mortality (11.5% versus 38.1%; adjusted hazard ratio, 3.27 [95% confidence interval, 1.31-8.15]; P=0.011), as compared with LEF-LG patients with ≤mild MR. Mortality was mainly driven by cardiac death (adjusted hazard ratio, 4.62; P=0.005). As compared with LEF-LG patients with ≥moderate MR assigned to medical therapy, LEF-LG patients with ≥moderate MR undergoing TAVI had significantly lower all-cause mortality (hazard ratio, 0.38; 95% confidence interval, 0.019-0.75) at 1 year. CONCLUSIONS Moderate or severe MR is a strong independent predictor of late mortality in LEF-LG patients undergoing TAVI. However, LEF-LG patients assigned to medical therapy have a dismal prognosis independent of MR severity suggesting that TAVI should not be withheld from symptomatic patients with LEF-LG severe aortic stenosis even in the presence of moderate or severe MR.
Resumo:
Introduction - Monocytes, with 3 different subsets, are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Mon1 are the “classical” monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. In PCI era, fewer patients have globally reduced left ventricular ejection fraction post infarction, hence the importance of studying regional wall motion abnormalities and deformation at segmental levels using longitudinal strain. Little is known of the role for the 3 monocyte subpopulations in determining global strain in ST elevation myocardial infarction patients (STEMI). Conclusion In patients with normal or mildly impaired EF post infarction, higher counts of Mon1 and Mon2 are correlated with GLS within 7 days and at 6 months of remodelling post infarction. Adverse clinical outcomes in patients with reduced convalescent GLS were predicted with Mon1 and Mon2 suggestive of an inflammatory role for the newly identified Mon2 subpopulation. These results imply an important role for monocytes in myocardial healing when assessed by subclinical ventricular function indices. Methodology - STEMI patients (n = 101, mean age 64 ± 13 years; 69% male) treated with percutaneous revascularisation were recruited within 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3). Phagocytic activity of monocytes was measured using flow cytometry and Ecoli commercial kit. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess global longitudinal strain (GLS) via speckle tracking. MACE was defined as recurrent acute coronary syndrome and death. Results - STEMI patients with EF ≥50% by Simpson’s biplane (n = 52) had GLS assessed. Using multivariate regression analysis higher counts of Mon1 and Mon 2 and phagocytic activity of Mon2 were significantly associated with GLS (after adjusting for age, time to hospital presentation, and peak troponin levels) (Table 1). At 6 months, the convalescent GLS remained associated with higher counts of Mon1, Mon 2. At one year follow up, using multivariate Cox regression analysis, Mon1 and Mon2 counts were an independent predictor of MACE in patients with a reduced GLS (n = 21)
Resumo:
Hepatocyte growth factor (HGF) plays a role in the improvement of cardiac function and remodeling. Their serum levels are strongly related with mortality in chronic systolic heart failure (HF). The aim of this study was to study prognostic value of HGF in acute HF, interaction with ejection fraction, renal function, and natriuretic peptides. We included 373 patients (age 76 ± 10 years, left ventricular ejection fraction [LVEF] 46 ± 14%, 48% men) consecutively admitted for acute HF. Blood samples were obtained at admission. All patients were followed up until death or close of study (>1 year, median 371 days). HGF concentrations were determined using a commercial enzyme-linked immunosorbent assay (human HGF immunoassay). The predictive power of HGF was estimated by Cox regression with calculation of Harrell C-statistic. HGF had a median of 1,942 pg/ml (interquartile rank 1,354). According to HGF quartiles, mortality rates (per 1,000 patients/year) were 98, 183, 375, and 393, respectively (p <0.001). In Cox regression analysis, HGF (hazard ratio1SD = 1.5, 95% confidence interval 1.1 to 2.1, p = 0.002) and N-terminal pro b-type natriuretic peptide (NT-proBNP; hazard ratio1SD = 1.8, 95% confidence interval 1.2 to 2.6, p = 0.002) were independent predictors of mortality. Interaction between HGF and LVEF, origin, and renal function was nonsignificant. The addition of HGF improved the predictive ability of the models (C-statistic 0.768 vs 0.741, p = 0.016). HGF showed a complementary value over NT-proBNP (p = 0.001): mortality rate was 490 with both above the median versus 72 with both below. In conclusion, in patients with acute HF, serum HGF concentrations are elevated and identify patients at higher risk of mortality, regardless of LVEF, ischemic origin, or renal function. HGF had independent and additive information over NT-proBNP.
Resumo:
A description of a computer program to analyse cine angiograms of the heart and pressure waveforms to calculate valve gradients.