960 resultados para Leaf gas-exchange


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation ( ), stomatal conductance ( ), intercellular CO2 concentration ( ), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and and, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The city of Sao Paulo is located in a subtropical region whose climate exhibits few defined seasons as well as frequent oscillations in temperature and rainfall throughout the year. In addition to interfering with physiological processes, these peculiar climatic dynamics influence the formation of O-3 and its influx into leaves, causing species used as bioindicators in temperate climates to be ineffective here. This study evaluated gas exchange variations in CO2 and H2O and leaf injuries induced by O-3 in Nicotiana tabacum Bel-W3 in relation to oscillations in environmental conditions. Plants were exposed to an O-3-polluted environment for fifteen periods of fourteen days each throughout 2008. Gas exchange and O-3 were higher during the summer and winter but were highly variable in all seasons. Severe injuries occurred during the winter and spring, with significant variation in this parameter being observed throughout the year. An analysis of biotic and abiotic variables revealed complex relationships among them, with great importance of meteorological factors in plant responses. We conclude that under unstable climatic conditions, the relationship between O-3 flux and injury is weak, and the qualitative character of biomonitoring is further confirmed. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net photosynthesis (A) and transpiration rates (E), stomatal conductance (g), water use efficiency (WUE), intrinsic water use efficiency (IWUE) and internal leaf CO2 concentration (C) in response to different vapor pressure deficit (1.2 and 2.5 kPa) were investigated in 'Pera' sweet orange plants affected by citrus variegated chlorosis (CVC), a disease caused by Xylella fastidiosa. All plants were well watered and leaf water potential (Pw) was also measured by the psychrometric technique. Results showed that healthy plants responded to higher vapor pressure deficit (VPD), lowering its net photosynthesis and transpiration rates, and stomatal conductance. However, diseased plants presented no clear response to VPD, showing lower A, E and g for both VPDs studied and very similar values to these variables in healthy plants at the highest VPD. Internal leaf CO2 concentration also decreased for healthy plants when under the highest VPD, and surprisingly, the same pattern of response was found in plants with CVC. These results, the lower Psi(w) and higher WUE values for diseased plants, indicated that this disease may cause stomatal dysfunction and affect the water resistance through xylem vessels, which ultimately may play some role in photosynthetic metabolism. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon can alleviate biotic and abiotic stresses in several crops, and it has beneficial effects on plants under nonstressed conditions. However, there is still doubt about foliar-applied Si efficiency and Si effects on mineral nutrition, physiological processes, and growth of potato (Solanum tuberosum L.) plants under wellwatered conditions. The objective of this study was to evaluate the effect of soil and foliar application of soluble Si on Si accumulation, nutrients, and pigments concentration as well as gas exchange and growth of potato plants. The experiment was conducted under greenhouse conditions in pots containing 35 dm3 of a Typic Acrortox soil. The treatments consisted of a control (no Si application), soil application of soluble Si (50 mg dm-3 Si), and foliar application of soluble Si (three sprays of 1.425 mM Si water solution, prepared with a soluble concentrate stabilized silicic acid), with eight replications. Both soil and foliar application of Si resulted in higher Si accumulation in the whole plant. Foliar application of Si resulted in the greatest Si concentration in leaves, and soil application increased Si concentration in leaves, stems, and roots. Silicon application, regardless of the application method, increased leaf area, specific leaf area, and pigment concentration (chlorophyll a and carotenoids) as well as photosynthesis and transpiration rates of wellwatered potato plants. However, only soil application increased P concentration in leaves and dry weight of leaves and stems. © Crop Science Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is an invasive exotic species widely found in disturbed and native communities of Florida. This species has been shown to displace native species as well as alter community structure and function. The purpose of this study was to determine if the growth and gas exchange patterns of Schinus, under differing salinity conditions, were different from native species. Two native upland glycophytic species (Rapanea punctata and Randia aculeata) and two native mangrove species (Rhizophora mangle and Laguncularia racemosa) were compared with the exotic. Overall, the exotics morphologic changes and gas exchange patterns were most similar to R. mangle. Across treatments, increasing salinity decreased relative growth rate (RGR), leaf area ratio (LAR) and specific leaf area (SLA) but did not affect root/shoot ratios (R:S). Allocation patterns were however significantly different among species. The largest proportion of Schinus biomass was allocated to stems (47%), resulting in plants that were generally taller than the other species. Schinus also had the highest SLA and largest total leaf area of all species. This meant that the exotic, which was taller and had thinner leaves, was potentially able to maintain photosynthetic area comparable to native species. Schinus response patterns show that this exotic exhibits some physiological tolerance for saline conditions. Coupled with its biomass allocation patterns (more stem biomass and large area of thin leaves), the growth traits of this exotic potentially provide this species an advantage over native plants in terms of light acquisition in a brackish forested ecosystem.