992 resultados para Leaf concentration
Resumo:
Objetivou-se avaliar os efeitos de nitrogênio (0, 100, 200, 300 e 400 kg/ha.ano), com ou sem aplicação de calcário dolomítico em cobertura, sobre o teor de potássio (K) do solo nas profundidades de 0 a 5; 5 a 10; e 10 a 20 cm e a concentração de potássio na planta. O experimento foi realizado em Latossolo Vermelho distroférrico de relevo suavemente ondulado, disposto em esquema fatorial 5 × 2, em blocos casualizados, com quatro repetições. A adubação nitrogenada promoveu aumento linear na concentração de potássio na planta e no teor desse mineral na camada de 0 a 5 cm do solo. Ocorreu efeito de inibição competitiva entre a absorção de potássio e cálcio e entre potássio e magnésio. Embora uma fração significativa de potássio retorne à camada superficial do solo pelo resíduo de forragem, em decorrência da maior produção de massa, o aumento da concentração de potássio na planta nas mais altas doses de nitrogênio comprova a importância do suprimento de potássio para a planta, por intensificar a massa de forragem.
Resumo:
This study analyzed the relationship between environmental factors, especially air pollution and climatic conditions, and non-structural carbohydrates (NSC) in plants of Lolium multiflorum exposed during 10 consecutive periods of 28 days at a polluted site (Congonhas) and at a reference site in Sao Paulo city (Brazil). After exposure, NSC composition and leaf concentrations of Al, Fe. Cu, Zn, Pb and Cd were measured. The seasonal pattern of NSC accumulation was quite similar in both sites, but plants at Congonhas showed higher concentrations of these compounds, especially fructans of low and medium degree of polymerization. Regression analysis showed that NSC in plants growing at the polluted site were explained by variations on temperature and leaf concentration of Fe (positive effect), as well as relative humidity and particulate material (negative effect). NSC in the standardized grass culture, in addition to heavy metal accumulation, may indicate stressing conditions in a sub-tropical polluted environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Vale do Ribeira, SP, main agricultural activity is the banana crop, which accounts for most of this fruit production in the State of São Paulo. The nutritional balance of the plant is one of the most important factors for the banana plant can complete the cycle and achieve high productivity. Aiming to evaluate the seasonal variation of leaf nutrient concentration in banana plants in Vale do Ribeira-SP, we used the results of 252 chemical analyses of plant tissue, collected from August 2009 to September 2010, in the 18 representative properties for the region, ten cultivated with subgroup Cavendish banana plant and eight of subgroup Prata banana plant. The largest variation between the macronutrient occurred for K and S, and among the micronutrients, especially for Fe and B. In some dates of evaluation, there was a higher leaf concentration of P, K, Ca and Zn, in subgroup Cavendish banana plants, while the subgroup Prata banana plants showed higher leaf concentration, especially of Mn, B and N. Climatic conditions, especially rain, influenced the leaf nutrient content, especially for K, N, S, B and Fe.
Resumo:
O nitrogênio é um nutriente essencial ao feijoeiro. Contudo, ainda há dúvidas sobre qual fonte e dose utilizar para o fornecimento desse nutriente em cobertura à cultura, no sistema plantio direto. O objetivo deste trabalho foi avaliar a influência de fontes e doses de N, aplicadas em cobertura, na nutrição e produtividade do feijoeiro (Phaseolus vulgaris L.) cultivado no sistema plantio direto, em um Nitossolo Vermelho. O delineamento experimental foi o de blocos ao acaso com quatro repetições, num esquema fatorial 2x4, constituído por duas fontes de N (nitrocálcio e uréia) e quatro doses de N (0, 30, 60 e 120 kg ha-1) em cobertura. A aplicação de doses elevadas de N, na forma de nitrocálcio, promoveu maior absorção de nitrato, K, Ca e Mg pelo feijoeiro em plantio direto, em comparação com a aplicação de uréia. A adubação nitrogenada em cobertura, utilizando como fonte o nitrocálcio ou a uréia, proporcionou aumento no teor de N nas folhas, na massa de matéria seca da parte aérea, no número de vagens por planta e na produtividade do feijoeiro no sistema plantio direto, em sucessão a aveia-preta, até a dose estimada de 95 kg ha-1 de uréia.
Resumo:
Foram realizados dois ensaios, sendo um em solução nutritiva e outro em solo, utilizando seis níveis de nitrogênio (28, 56, 84, 112, 140 e 168 mg/L de N) a fim de ajustar as leituras diretas, feitas nas folhas de feijoeiro, com um clorofilômetro (Minolta SPAD-501), aos níveis crescentes de nitrogênio e ao seu teor nas folhas. Avaliaram-se os parâmetros: área foliar; massas dos materiais verde e seco; teor de clorofila; produção de grãos e teores de N, Ca, Mg e S. Todos esses dados, mais as leituras do aparelho, foram correlacionados entre si e com os níveis de N aplicados. As correlações positivas entre as leituras e os níveis de N fornecidos (R = 0,86) e entre as leituras e os teores de N nas folhas (R = 0,75) indicam que há perspectivas favoráveis quanto ao uso desse equipamento para detectar deficiências de nitrogênio em feijoeiro.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to evaluate the influence of nitrogen doses on mineral nutrition and yield of macadamia nut (Macadamia integrifolia). The experiment was carried out during three agricultural years, in Jaboticabal, SP, Brazil. The experimental design was a complete block with four replicates. Five doses of N (0, 50, 100, 150, and 200 kg ha-1 per year), applied as urea, were evaluated. The increase in N doses increased the nutrient concentration in the leaves and the yield of nuts and almonds. Ca, Mg, and S contents decreased and the ones of Fe and Mg increased linearly with N fertilization. Nut and almond yields were positively correlated with leaf N concentration, and the range from 14 to 18 g kg-1 allowed the highest yields. The dose of 150 kg ha-1 of N per year provides higher nut yields, without reducing the recovery rate of almonds.
Resumo:
The Dipteryx alata is a tree specie with possibility of use in human and animal nutrition, and in the pharmaceutical industry. For reclamation of degraded areas, the revegetation has been an alternative, however, requires fertilizer addition. The objectives of this study were to evaluate the nutritional status and growth of Dipteryx alata seedlings, introduced in degraded soil under recovery process, with residues (organic and agroindustrial), compared to collected seedlings in preserved Cerrado, and evaluate the residues impact on soil chemical properties. In this work the degraded soil received the incorporation of residues, organic - RO (macrophytes) and agroindustrial - RA (ash derived from burning bagasse from sugarcane), with the following doses: 0, 16 and 32 t ha- 1 and 0, 15, 30 and 45 t ha-1 respectively. Within three months of incorporation of residues into the degraded soil, the D. alata seedlings were introduced in the experimental area, and 12 months later were evaluated for height, stem diameter, chlorophyll content and leaf contents of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn. For purposes of comparison, the foliar concentration of those elements was determined in Dipteryx alata seedlings collected in preserved Cerrado area. Concomitant with the collect of leaves, at Cerrado and experimental area, soil was collected (0.0 - 0.20m deep) for evaluation of chemical parameters (P, OM, pH, K, Ca, Mg, H + Al, Al, Cu, Fe, Mn and Zn). Comparing the seedlings collected in the Cerrado with the seedlings from experimental area it is observed that the leaf concentration of N, P, K and Mg was higher in seedlings from preserved Cerrado in relation to those introduced in the experimental area. Fe, Mn and Zn, have lower foliar concentration in plants collected in the Cerrado, in the case of Mn the worst results occur in the absence of macrophytes indicating the importance of organic residue. The foliar concentration of Ca, S and Cu was similar in...
Resumo:
The planting of seedlings, the establishment and maintenance of the natural regeneration process, or the combination thereof, are methods used in the recovery of degraded or disturbed environments, however, often require the addition of soil conditioners. This study aimed to evaluate the influence of conditioners, introduced in degraded soil on growth and nutritional status of Astronium fraxinifolium seedlings. To conduct the experimentation were used as degraded soil conditioner, ash from sugarcane bagasse (CZ) and macrophytes (MC), at the doses of 0, 15, 30 and 45 t ha-1 and 0, 16 and 32 t ha-1 respectively, which combined produced 12 treatments, with three replications, and for field installation, was used the experimental randomized block design. Astronium fraxinifolium (Gonçalo Alves) seedlings, native tree species in cerrado, were introduced in the experimental area and, after 12 months, were evaluated for leaf concentration of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, boron, copper, iron, manganese and zinc (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn, respectively). Seedlings and adult plants of A. fraxinifolium were collected in preserved cerrado reserve were also analyzed for nutrients foliar concentration to perform a comparative analysis. The leaves collection in the preserved cerrado and experimental area, was accompanied by soil sampling (0.0 - 0,20 m deep), which was analyzed for phosphorus, OM (organic matter), pH, K, Ca, Mg, Al+H (potential acidity), Al (aluminum), Cu, Fe, Mn and Zn. The results show that the applied residues contributed to raise the foliar concentration of Cu and Fe. The foliar concentration of nutrients was higher in A. fraxinifolium seedlings from preserved cerrado, except for B, which was similar between areas, besides Cu and Fe with higher levels in the seedlings from experimental area. The combined addition of residues (MC and CZ), led to increase the plants height and diameter. This...
Resumo:
The Vale do Ribeira, SP, main agricultural activity is the banana crop, which accounts for most of this fruit production in the State of São Paulo. The nutritional balance of the plant is one of the most important factors for the banana plant can complete the cycle and achieve high productivity. Aiming to evaluate the seasonal variation of leaf nutrient concentration in banana plants in Vale do Ribeira-SP, we used the results of 252 chemical analyses of plant tissue, collected from August 2009 to September 2010, in the 18 representative properties for the region, ten cultivated with subgroup Cavendish banana plant and eight of subgroup Prata banana plant. The largest variation between the macronutrient occurred for K and S, and among the micronutrients, especially for Fe and B. In some dates of evaluation, there was a higher leaf concentration of P, K, Ca and Zn, in subgroup Cavendish banana plants, while the subgroup Prata banana plants showed higher leaf concentration, especially of Mn, B and N. Climatic conditions, especially rain, influenced the leaf nutrient content, especially for K, N, S, B and Fe.
Resumo:
Two pot experiments were conducted in two different seasons at the University of Agricultural Science, Bangalore, India, to study (a) the relationship between chlorophyll concentration (by measuring the leaf light-transmittance characteristics using a SPAD metre) and transpiration efficiency (TE) and (b) the effect of leaf N on chlorophyll and TE relationship in peanut. In Experiment (Expt) I, six peanut genotypes with wide genetic variation for the specific leaf area (SLA) were used. In Expt II, three non-nodulating isogenic lines were used to study the effect of N levels on leaf chlorophyll concentration–TE relationship without potential confounding effects in biological nitrogen fixation. Leaf N was manipulated by applying N fertiliser in Expt II. Chlorophyll concentration, TE (g dry matter kg−1 of H2O transpired, measured using gravimetric method), specific leaf nitrogen (g N m−2, SLN), SLA (cm2 g−1), carbon isotope composition (Δ13C) were determined in the leaves sampled during the treatment period (35–55 days after sowing) in the two experiments. Results showed that the leaf chlorophyll concentration expressed as soil plant analytical development (SPAD) chlorophyll metre reading (SCMR) varied significantly among genotypes in Expt I and as a result of N application in Expt II. Changes in leaf N levels were strongly associated with changes in SCMR, TE and Δ13C. In both the experiments, a significant positive relationship between SCMR and TE with similar slopes but differing intercepts was noticed. However, correction of TE for seasonal differences in vapour pressure deficit (VPD) between the two experiments resulted in a single and stronger relationship between SCMR and TE. There was a significant inverse relationship between SCMR and Δ13C, suggesting a close linkage between chlorophyll concentration and Δ13C in peanut. This study provides the first evidence for a significant positive relationship between TE and leaf chlorophyll concentration in peanut. The study also describes the effect of growing environment on the relationships among SLA, SLN and SCMR.