965 resultados para Leachin Maximum contaminant level


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient leaching studies are expensive and require expertise in water collection and analyses. Less expensive or easier methods that estimate leaching losses would be desirable. The objective of this study was to determine if anion-exchange membranes (AEMs) and reflectance meters could predict nitrate (NO3-N) leaching losses from a cool-season lawn turf. A two-year field study used an established 90% Kentucky bluegrass (Poa pratensis L.)-10% creeping red fescue (Festuca rubra L.) turf that received 0 to 98 kg N ha-1 month-1, from May through November. Soil monolith lysimeters collected leachate that was analyzed for NO3-N concentration. Soil NO3-N was estimated with AEMs. Spectral reflectance measurements of the turf were obtained with chlorophyll and chroma meters. No significant (p > 0.05) increase in percolate flow-weighted NO3-N concentration (FWC) or mass loss occurred when AEM desorbed soil NO3-N was below 0.84 µg cm-2 d-1. A linear increase in FWC and mass loss (p < 0.0001) occurred, however, when AEM soil NO3-N was above this value. The maximum contaminant level (MCL) for drinking water (10 mg L-1 NO3-N) was reached with an AEM soil NO3-N value of 1.6 µg cm-2 d-1. Maximum meter readings were obtained when AEM soil NO3 N reached or exceeded 2.3 µg cm-2 d-1. As chlorophyll index and hue angle (greenness) increased, there was an increased probability of exceeding the NO3-N MCL. These data suggest that AEMs and reflectance meters can serve as tools to predict NO3-N leaching losses from cool-season lawn turf, and to provide objective guides for N fertilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triclabendazole is the only anthelmintic drug, which is active against immature, mature and adult stages of fluke. The objective of this work was to develop an analytical method to quantify and confirm the presence of triclabendazole residues around the MRL. In this work, a new analytical method was developed, which extended dynamic range to 1–100 and 5–1000 g kg-1 for milk and tissue, respectively. This was achieved using a mobile phase containing trifluoroacetic acid (pKa of 0.3), which resulted in the formation of the protonated pseudomolecular ions, [M+H]+, of triclabendazole metabolites. Insufficient
ionisation of common mobile phase additives due to low pKa values (<2) was identified as the cause of poor linearity. The new mobile phase conditions allowed the analysis of triclabendazole residues in liver, muscle and milk encompassing their EU maximum residue levels (MRL) (250, 225 and 10 g kg-1 respectively). Triclabendazole residues were extracted using a modified QuEChERS method and analysed by positive electrospray ionisation mass spectrometry with all analytes eluted by 2.23 min. The method was validated at the MRL according to Commission Decision (CD) 2002/657/EC criteria. The decision limit (CC) of the method was in the range of 250.8–287.2, 2554.9–290.8 and 10.9–12.1 g kg-1 for liver, muscle and milk, respectively. The performance of the method was successfully verified for triclabendazole in muscle by participating in a proficiency study, the method was also applied to incurred liver, muscle and milk samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many contaminants are currently unregulated by the government and do not have a set limit, known as the Maximum Contaminant Level, which is dictated by cost and the best available treatment technology. The Maximum Contaminant Level Goal, on the other hand, is based solely upon health considerations and is non-enforceable. In addition to being naturally occurring, contaminants may enter drinking water supplies through industrial sources, agricultural practices, urban pollution, sprawl, and water treatment byproducts. Exposure to these contaminants is not limited to ingestion and can also occur through dermal absorption and inhalation in the shower. Health risks for the general public include skin damage, increased risk of cancer, circulatory problems, and multiple toxicities. At low levels, these contaminants generally are not harmful in our drinking water. However, children, pregnant women, and people with compromised immune systems are more vulnerable to the health risks associated with these contaminants. Vulnerable peoples should take additional precautions with drinking water. This research project was conducted in order to learn more about our local drinking water and to characterize our exposure to contaminants. We hope to increase public awareness of water quality issues by educating the local residents about their drinking water in order to promote public health and minimize exposure to some of the contaminants contained within public water supplies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of elevated uranium (U) in sandstone aquifers was investigated in the Upper Peninsula of Michigan, focusing on aquifers of the Jacobsville Sandstone. The hydrogeochemical controls on groundwater U concentrations were characterized using a combination of water sampling and spectral gamma-ray logging of sandstone cliffs and residential water wells. 235U/238U isotope ratios were consistent with naturally occurring U. Approximately 25% of the 270 wells tested had U concentrations above the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 30 μg/L, with elevated U generally occurring in localized clusters. Water wells were logged to determine whether groundwater U anomalies could be explained by the heterogeneous distribution of U in the sandstone. Not all wells with relative U enrichment in the sandstone produced water with U above the MCL, indicating that the effect of U enrichment in the sandstone may be modified by other hydrogeochemical factors. Well water had high redox, indicating U is in its highly soluble (VI) valence. Equilibrium modeling indicated that aqueous U is complexed with carbonates. In general, wells with elevated U concentrations had low 235U/238U activity ratios. However, in some areas U concentrations and 235U/238U activity ratios were simultaneously high, possibly indicating differences in rock-water interactions. Limited groundwater age dating suggested that residence time may also help explain variations in well water U concentrations. Low levels of U enrichment (4 to 30 ppm) in the Jacobsville sandstone may make wells in its oxidized aquifers at risk for U concentrations above the MCL. On average, U concentrations were highest in heavy mineral and clay layers and rip up conglomerates. Uranium concentrations above 4 ppm also occurred in siltstones, sandstones and conglomerates. Uranium enrichment was likely controlled by deposition processes, sorption to clays, and groundwater flow, which was controlled by permeability variations in the sandstone. Low levels of U enrichment were found at deltaic, lacustrine and alluvial fan deposits and were not isolated to specific depositional environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an investigation into the microbially mediated processes involved in the transformation of arsenic. With the recent change in the Federal Maximum Contaminant Level for arsenic in drinking water, an increasing amount of resources are being devoted to understanding the mechanisms involved in the movement of arsenic. Arsenic in drinking water typically comes from natural sources, but the triggers that result in increased release of arsenic from parent material are poorly understood. Knowledge of these processes is necessary in order to make sound engineering decisions regarding drinking water management practices. Recent years have brought forth the idea that bacteria play a significant role in arsenic cycling. Groundwater is a major source of potable water in this and many other countries. To date, no reports have been made indicating the presence and activity of arsenate reducing bacteria in groundwater settings, which may increase dissolved arsenic concentrations. This research was designed to address this question and has shown that these bacteria are present in Maine groundwater. Two Maine wells were sampled in order to culture resident bacteria that are capable of dissimilatory arsenate reduction. Samples were collected using anaerobic techniques fiom wells in Northport and Green Lake. These samples were amended with specific compounds to enrich the resident population of arsenate utilizing bacteria. These cultures were monitored over time to establish rates of arsenate reduction. Cultures fiom both sites exhibited arsenate reduction in initial enrichment cultures. Isolates obtained fiom the Green Lake enrichments, however, did not reduce arsenate. This indicates either that a symbiotic relationship was required for the observed arsenate reduction or that fast-growing fermentative organisms that could survive in high arsenate media were picked in the isolation procedure. The Northport cultures exhibited continued arsenate reduction after isolation and successive transfers into fiesh media. The cultured bacteria reduced the majority of 1 a arsenate solutions in less than one week, accompanied by a corresponding oxidation of lactate. The 16s rRNA fiom the isolate was arnplifled and sequenced. The results of the DNA sequence analysis indicate that the rRNA sequence of the bacteria isolated at the Northport site is unique. This means that this strain of bacteria has not been reported before. It is in the same taxonomic subgroup as two previously described arsenate respirers. The implications of this study are significant. The fact that resident bacteria are capable of reducing arsenate has implications for water management practices. Reduction of arsenate to arsenite increases the mobility of the compound, as well as the toxicity. An understanding of the activity of these types of organisms is necessary in order to understand the contribution they are making to arsenic concentrations in drinking water. The next step in this work would be to quantitj the actual loading of dissolved arsenic present in aquifers because of these organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and inexpensive method is described for analysis of uranium (U) activity and mass in water by liquid scintillation counting using $\alpha$/$\beta$ discrimination. This method appears to offer a solution to the need for an inexpensive protocol for monitoring U activity and mass simultaneously and an alternative to the potential inaccuracy involved when depending on the mass-to-activity conversion factor or activity screen.^ U is extracted virtually quantitatively into 20 ml extractive scintillator from a 1-$\ell$ aliquot of water acidified to less than pH 2. After phase separation, the sample is counted for a 20-minute screening count with a minimum detection level of 0.27 pCi $\ell\sp{-1}$. $\alpha$-particle emissions from the extracted U are counted with close to 100% efficiency with a Beckman LS6000 LL liquid scintillation counter equipped with pulse-shape discrimination electronics. Samples with activities higher than 10 pCi $\ell\sp-1$ are recounted for 500-1000 minutes for isotopic analysis. Isotopic analysis uses events that are automatically stored in spectral files and transferred to a computer during assay. The data can be transferred to a commercially available spreadsheet and retrieved for examination or data manipulation. Values for three readily observable spectral features can be rapidly identified by data examination and substituted into a simple formula to obtain $\sp{234}$U/$\sp{238}$U ratio for most samples. U mass is calculated by substituting the isotopic ratio value into a simple equation.^ The utility of this method for the proposed compliance monitoring of U in public drinking water supplies was field tested with a survey of drinking water from Texas supplies that had previously been known to contain elevated levels of gross $\alpha$ activity. U concentrations in 32 samples from 27 drinking water supplies ranged from 0.26 to 65.5 pCi $\ell\sp{-1}$, with seven samples exceeding the proposed Maximum Contaminant Level of 20 $\mu$g $\ell\sp{-1}$. Four exceeded the proposed activity screening level of 30 pCi $\ell\sp{-1}$. Isotopic ratios ranged from 0.87 to 41.8, while one sample contained $\sp{234}$U activity of 34.6 pCi $\ell\sp{-1}$ in the complete absence of its parent, $\sp{238}$U. U mass in the samples with elevated activity ranged from 0.0 to 103 $\mu$g $\ell\sp{-1}$. A limited test of screening surface and groundwaters for contamination by U from waste sites and natural processes was also successful. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews a study to determine the maximum discourse level speech perception capabilities of profoundly deaf children in four speech perception categories as defined by the Early Speech Perception Test (ESP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate the sound pressure level to which preschool students are exposed. Method: This was a prospective, quantitative, nonexperimental, and descriptive study. To achieve the aim of the study we used an audio dosimeter. The sound pressure level (SPL) measurements were obtained for 2 age based classrooms. Preschool I and II. The measurements were obtained over 4 days in 8-hour sessions, totaling 1920 minutes. Results: Compared with established standards, the SPL measured ranged from 40.6 dB (A) to 105.8 dB (A). The frequency spectrum of the SPL was concentrated in the frequency range between 500 Hz and 4000 Hz. The older children produced higher SPLs than the younger ones, and the levels varied according to the activity performed. Painting and writing were the quietest activities, while free activities period and games were the noisiest. Conclusion: The SPLs measured at the preschool were higher and exceeded the maximum permitted level according to the reference standards. Therefore, the implementation of actions that aim to minimize the negative impact of noise in this environment is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioelectrochemical systems could have potential for bioremediation of contaminants either in situ or ex situ. The treatment of a mixture of phenanthrene and benzene using two different tubular microbial fuel cells (MFCs) designed for either in situ and ex situ applications in aqueous systems was investigated over long operational periods (up to 155 days). For in situ deployments, simultaneous removal of the petroleum hydrocarbons (>90% in term of degradation efficiency) and bromate, used as catholyte, (up to 79%) with concomitant biogenic electricity generation (peak power density up to 6.75 mWm−2) were obtained at a hydraulic retention time (HRT) of 10 days. The tubular MFC could be operated successfully at copiotrophic (100 ppm phenanthrene, 2000 ppm benzene at HRT 30 days) and oligotrophic (phenanthrene and benzene, 50 ppb each, HRT 10 days) substrate conditions suggesting its effectiveness and robustness at extreme substrate concentrations in anoxic environments. In the MFC designed for ex situ deployments, optimum MFC performance was obtained at HRT of 30 h giving COD removal and maximum power output of approximately 77% and 6.75 mWm−2 respectively. The MFC exhibited the ability to resist organic shock loadings and could maintain stable MFC performance. Results of this study suggest the potential use of MFC technology for possible in situ/ex situ hydrocarbon-contaminated groundwater treatment or refinery effluents clean-up, even at extreme contaminant level conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aurizon, Australia's largest rail freight operator, is introducing the Static Frequency Converter (SFC) technology into its electric railway network as part of the Bauhinia Electrification Project. The introduction of SFCs has significant implications on the protection systems of the 50kV traction network. The traditional distance protection calculation method does not work in this configuration because of the effect that the SFC in combination with the remote grid has on the apparent impedance, and was substantially reviewed. The standard overcurrent (OC) protection scheme is not suitable due to the minimum fault level being below the maximum load level and was revised to incorporate directionality and under-voltage inhibit. Delta protection was reviewed to improve sensitivity. A new protection function was introduced to prevent back-feeding faults in the transmission network through the grid connection. Protection inter-tripping was included to ensure selectivity between the SFC protection and the system downstream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emissions of coal combustion fly ash through real scale ElectroStatic Precipitators (ESP) were studied in different coal combustion and operation conditions. Sub-micron fly-ash aerosol emission from a power plant boiler and the ESP were determined and consequently the aerosol penetration, as based on electrical mobility measurements, thus giving thereby an indication for an estimate on the size and the maximum extent that the small particles can escape. The experimentals indicate a maximum penetration of 4% to 20 % of the small particles, as counted on number basis instead of the normally used mass basis, while simultaneously the ESP is operating at a nearly 100% collection efficiency on mass basis. Although the size range as such seems to appear independent of the coal, of the boiler or even of the device used for the emission control, the maximum penetration level on the number basis depends on the ESP operating parameters. The measured emissions were stable during stable boiler operation for a fired coal, and the emissions seemed each to be different indicating that the sub-micron size distribution of the fly-ash could be used as a specific characteristics for recognition, for instance for authenticity, provided with an indication of known stable operation. Consequently, the results on the emissions suggest an optimum particle size range for environmental monitoring in respect to the probability of finding traces from the samples. The current work embodies also an authentication system for aerosol samples for post-inspection from any macroscopic sample piece. The system can comprise newly introduced new devices, for mutually independent use, or, for use in a combination with each other, as arranged in order to promote the sampling operation length and/or the tag selection diversity. The tag for the samples can be based on naturally occurring measures and/or added measures of authenticity in a suitable combination. The method involves not only military related applications but those in civil industries as well. Alternatively to the samples, the system can be applied to ink for note printing or other monetary valued papers, but also in a filter manufacturing for marking fibrous filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements and modeling of Cu2Se, Ag2Se, and Cu2S show that superionic conductors have great potential as thermoelectric materials. Cu2Se and Ag2Se are predicted to reach a zT of 1.2 at room temperature if their carrier concentrations can be reduced, and Cu-vacancy doped Cu2S reaches a maximum zT of 1.7 at 1000 K. Te-doped Ag2Se achieves a zT of 1.2 at 520 K, and could reach a zT of 1.7 if its carrier concentration could be reduced. However, superionic conductors tend to have high carrier concentrations due to the presence of metal defects. The carrier concentration has been found to be difficult to reduce by altering the defect concentration, therefore materials that are underdoped relative to the optimum carrier concentration are easier to optimize. The results of Te-doping of Ag2Se show that reducing the carrier concentration is possible by reducing the maximum Fermi level in the material.

Two new methods for analyzing thermoelectric transport data were developed. The first involves scaling the temperature-dependent transport data according to the temperature dependences expected of a single parabolic band model and using all of the scaled data to perform a single parabolic band analysis, instead of being restricted to using one data point per sample at a fixed temperature. This allows for a more efficient use of the transport data. The second involves scaling only the Seebeck coefficient and electrical conductivity. This allows for an estimate of the quality factor (and therefore the maximum zT in the material) without using Hall effect data, which are not always available due to time and budget constraints and are difficult to obtain in high-resistivity materials. Methods for solving the coherent potential approximation effective medium equations were developed in conjunction with measurements of the resistivity tensor elements of composite materials. This allows the electrical conductivity and mobility of each phase in the composite to be determined from measurements of the bulk. This points out a new method for measuring the pure-phase electrical properties in impure materials, for measuring the electrical properties of unknown phases in composites, and for quantifying the effects of quantum interactions in composites.