814 resultados para Lavender oil
Resumo:
The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.
Resumo:
Previous studies have found beneficial effects of aromatherapy massage for agitation in people with dementia, for pain relief and for poor sleep. Children with autism often have sleep difficulties, and it was thought that aromatherapy massage might enable more rapid sleep onset, less sleep disruption and longer sleep duration. Twelve children with autism and learning difficulties (2 girls and 10 boys aged between 12 years 2 months to 15 years 7 months) in a residential school participated in a within subjects repeated measures design: 3 nights when the children were given aromatherapy massage with lavender oil were compared with 14 nights when it was not given. The children were checked every 30 min throughout the night to determine the time taken for the children to settle to sleep, the number of awakenings and the sleep duration. One boy's data were not analyzed owing to lengthy absence. Repeated measures analysis revealed no differences in any of the sleep measures between the nights when the children were given aromatherapy massage and nights when the children were not given aromatherapy massage. The results suggest that the use of aromatherapy massage with lavender oil has no beneficial effect on the sleep patterns of children with autism attending a residential school. It is possible that there are greater effects in the home environment or with longer-term interventions.
Resumo:
Current evidence-based guidelines recommend that 2% (w/v) chlorhexidine digluconate (CHG), preferentially in 70% (v/v) isopropyl alcohol (IIPA), is used for skin antisepsis prior to incision of the skin. In this current study, the antimicrobial efficacy of CHG, six essential oils [tea tree oil (TTO), thymol, eucalyptus oil (EO), juniper oil, lavender oil and citronella] and novel benzylidenecarboxamidrazone and thiosemicarbazone compounds were determined against a panel of microorganisms commonly associated with skin infection (Staphylococcus epidermidis, S. aureus, meticillin-resistant S. aureus, Propionibacterium acnes, Acinetobacter spp., Pseudomonas aeruginosa and Candida albicans) The results demonstrated synergistic activity of CHG in combination with EO against biofilm cultures of S. epidermidis, with significantly reduced concentrations of CHG and EO required to inhibit biofilm growth compared to CHG or EO alone. Skin permeation of CHG was subsequently investigated using an in vitro human skin model (Franz cell) and the penetration profile was determined by serial sectioning of the full thickness human skin. Two percent (w/v) CHG in aqueous solution and in 70% (v/v) IPA demonstrated poor skin permeation; however, the skin permeation was significantly enhanced in combination with 5% - 50% (v/v) EO. Detectable levels of CHG did not permeate through full thickness skin in 24 h. Skin permeation of 2% (w/v) CHG in 70% (v/v) IPA in the presence of 10% (v/v) EO was subsequently studied. The results demonstrated a significantly enhanced skin penetration of CHG after a 2 min application, with CHG detected at significant levels to a depth of 600 m with CHG in combination with EO and IPA compared to 100 m with IPA alone. Combination antisepsis comprising CHG and EO may be beneficial for skin antisepsis prior to invasive procedures to reduce the number of microorganisms on and within the skin due to enhanced skin penetration of CHG and improved efficacy against S. epidermidis in a biofilm mode of growth.
Resumo:
Lipid oxidation is the major form of deterioration in foods because it decreases food quality and nutritional value, and may have negative health implications. Selected aromatic plant extracts from leaves, flowers and stems of rosemary, thyme and lavender were investigated for their antioxidant activity. The total polyphenol content was determined by the Folin-Ciocalteu assay and the antioxidant capacity was determined by the Trolox equivalent antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl, oxygen radical absorbance capacity and ferric-reducing antioxidant power assays. For all four antioxidant assays, the extracts from thyme flowers, lavender leaves and thyme leaves had the highest antioxidant activity, followed by rosemary stems, rosemary leaves, and lavender stems, and the lavender flowers and thyme stems had the lowest antioxidant activity. The antioxidant activity was correlated with the polyphenol content, although minor deviations were observed. In oil-in-water emulsion, extracts from rosemary leaves and thyme leaves were most effective at retarding oxidation followed by the rosemary stems and thyme flowers. Extracts from thyme flowers and lavender leaves were less effective in the emulsion than predicted by the homogeneous antioxidant assays. This study demonstrated the potential use of plants extract as substitutes for synthetic antioxidants.
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.
Resumo:
The use of semiochemicals for manipulation of the pollen beetle Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae) is being investigated for potential incorporation into a push-pull control strategy for this pest, which damages oilseed rape, Brassica napus L. (Brassicaceae), throughout Europe. The response of M. aeneus to non-host plant volatiles was investigated in laboratory assays to establish whether they have any effect on host plant location behaviour. Two approaches were used. First a novel, moving-air bioassay using air funnels was developed to compare the response of M. aeneus to several non-host plant essential oils. The beetles avoided the host plant flowers in the presence of non-host volatiles, suggesting that M. aeneus uses olfactory cues in host location and/or acceptance. The results were expressed as 'repellency values' in order to compare the effects of the different oils tested. Lavender (Lavendula angustifolia Miller) (Lamiaceae) essential oil gave the highest repellency value. In addition, a four-arm olfactometer was used to investigate olfactory responses, as this technique eliminated the influence of host plant visual and contact cues. The attraction to host plant volatiles was reduced by the addition of non-host plant volatiles, but in addition to masking the host plant volatiles, the non-host volatiles were avoided when these were presented alone. This is encouraging for the potential use of non-host plants within a push-pull strategy to reduce the pest colonisation of crops. Further testing in more realistic semi-field and field trials is underway.
Resumo:
A semiochemical based push-pull strategy for control of oilseed rape pests is being developed at Rothamsted Research. This strategy uses insect and plant derived semiochemicals to manipulate pests and their natural enemies. An important element within this strategy is an understanding of the importance of non-host plant cues for pest insects and how such signals could be used to manipulate their behaviour. Previous studies using a range of non-host plants have shown that, for the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae), the essential oil of lavender, Lavandula angustifolia (Lamiaceae), was the most repellent. The aim of this study was to identify the active components in L. angustifolia oil, and to investigate the behaviour of M. aeneus to these chemicals, to establish the most effective use of repellent stimuli to disrupt colonisation of oilseed rape crops. Coupled gas chromatography-electroantennography (GC-EAG) and gas chromatography-mass spectrometry (GC-MS) resulted in the identification of seven active compounds which were tested for behavioural activity using a 4-way olfactometer. Repellent responses were observed with (±)-linalool and (±)-linalyl acetate. The use of these chemicals within a push-pull pest control strategy is discussed.
Resumo:
In the current study, a new approach has been developed for correcting the effect that moisture reduction after virgin olive oil (VOO) filtration exerts on the apparent increase of the secoiridoid content by using an internal standard during extraction. Firstly, two main Spanish varieties (Picual and Hojiblanca) were submitted to industrial filtration of VOOs. Afterwards, the moisture content was determined in unfiltered and filtered VOOs, and liquid-liquid extraction of phenolic compounds was performed using different internal standards. The resulting extracts were analyzed by HPLC-ESI-TOF/MS, in order to gain maximum information concerning the phenolic profiles of the samples under study. The reduction effect of filtration on the moisture content, phenolic alcohols, and flavones was confirmed at the industrial scale. Oleuropein was chosen as internal standard and, for the first time, the apparent increase of secoiridoids in filtered VOO was corrected, using a correction coefficient (Cc) calculated from the variation of internal standard area in filtered and unfiltered VOO during extraction. This approach gave the real concentration of secoiridoids in filtered VOO, and clarified the effect of the filtration step on the phenolic fraction. This finding is of great importance for future studies that seek to quantify phenolic compounds in VOOs.
Resumo:
In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, but there are no experimental studies concerning the phenolic compound contents of commercial EVOO. The aim of this work was to optimise the separation of 17 phenolic compounds already detected in EVOO. A Doehlert matrix experimental design was used, evaluating the effects of pH and electrolyte concentration. Resolution, runtime and migration time relative standard deviation values were evaluated. Derringer's desirability function was used to simultaneously optimise all 37 responses. The 17 peaks were separated in 19min using a fused-silica capillary (50μm internal diameter, 72cm of effective length) with an extended light path and 101.3mmolL(-1) of boric acid electrolyte (pH 9.15, 30kV). The method was validated and applied to 15 EVOO samples found in Brazilian supermarkets.
Resumo:
The essential oil from the leaves of Ocimum kilimandscharicum (EOOK), collected in Dourados-MS, was investigated for anticancer, anti-inflammatory and antioxidant activity and chemical composition. The essential oil was extracted by hydrodistillation, and the chemical composition was performed by gas chromatography-mass spectrometry. The essential oil was evaluated for free radical-scavenging activity using the DPPH assay and was tested in an anticancer assay against ten human cancer cell lines. The response parameter (GI50) was calculated for the cell lines tested. The anti-inflammatory activity was evaluated using carrageenan-induced pleurisy in mice. The chemical composition showed 45 components with a predominance of monoterpenes, such as camphor (51.81%), 1,8 cineole (20.13%) and limonene (11.23%). The EOOK exhibited potent free radical-scavenging activity by the DPPH assay with a GI50 of 8.31 μg/ml. The major constituents, pure camphor (IC50=12.56 μg/ml) and mixture of the limonene: 1, 8 cineole (IC50=23.25 μg/ml) displayed a potent activity. The oral administration of EOOK (at 30 and 100 mg kg(-1)), as well as the pure camphor or a mixture of 1,8 cineole with limonene, significantly inhibited the carrageenan (Cg) induced pleurisy, reducing the migration of total leukocytes in mice by 82 ± 4% (30 mg kg(-1) of EOOK), 95 ± 4% (100 mg kg(-1) of EOOK), 83 ± 9% (camphor) and 80 ± 5% (mixture of 1,8 cineole:limonene 1:1). In vitro cytotoxicity screening against a human ovarian cancer cell line displayed high selectivity and potent anticancer activity with GI50=31.90 mg ml(-1). This work describes the anti-inflammatory, anticancer and antioxidant effects of EOOK for the first time. The essential oil exhibited marked anti-inflammatory, antioxidant and anticancer effects, an effect that can be attributed the presence of majorital compounds, and the response profiles from chemical composition differed from other oils collected in different locales.
Resumo:
Essential oil from the leaves of Guatteria australis was obtained by hydrodistillation, analyzed by Gas Chromatography coupled to Mass Spectromery (GC-MS) and their antiproliferative, antileishmanial, antibacterial, antifungal and antioxidant activities were also evaluated. Twenty-three compounds were identified among which germacrene B (50.66%), germacrene D (22.22%) and (E)-caryophyllene (8.99%) were the main compounds. The highest antiproliferative activity was observed against NCI-ADR/RES (TGI = 31.08 μg/ml) and HT-29 (TGI = 32.81 μg/ml) cell lines. It also showed good antileishmanial activity against Leishmania infantum (IC50 = 30.71 μg/ml). On the other hand, the oil exhibited a small effect against Staphylococcus aureus ATCC 6538, S. aureus ATCC 14458 and Escherichia coli ATCC 10799 (MIC = 250 μg/ml), as well as small antioxidant activity (457 μmol TE/g) assessed through ORACFL assay. These results represent the first report regarding chemical composition and bioactivity of G. australis essential oil.
Resumo:
The recombinant Rhizopus oryzae lipase (1-3 positional selective), immobilized on Relizyme OD403, has been applied to the production of biodiesel using single cell oil from Candida sp. LEB-M3 growing on glycerol from biodiesel process. The composition of microbial oil is quite similar in terms of saponifiable lipids than olive oil, although with a higher amount of saturated fatty acids. The reaction was carried out in a solvent system, and n-hexane showed the best performance in terms of yield and easy recovery. The strategy selected for acyl acceptor addition was a stepwise methanol addition using crude and neutralized single cell oil, olive oil and oleic acid as substrates. A FAMEs yield of 40.6% was obtained with microbial oils lower than olive oil 54.3%. Finally in terms of stability, only a lost about 30% after 6 reutilizations were achieved.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.