830 resultados para Lattice-based construction
Resumo:
The notion of certificateless public-key encryption (CL-PKE) was introduced by Al-Riyami and Paterson in 2003 that avoids the drawbacks of both traditional PKI-based public-key encryption (i.e., establishing public-key infrastructure) and identity-based encryption (i.e., key escrow). So CL-PKE like identity-based encryption is certificate-free, and unlike identity-based encryption is key escrow-free. In this paper, we introduce simple and efficient CCA-secure CL-PKE based on (hierarchical) identity-based encryption. Our construction has both theoretical and practical interests. First, our generic transformation gives a new way of constructing CCA-secure CL-PKE. Second, instantiating our transformation using lattice-based primitives results in a more efficient CCA-secure CL-PKE than its counterpart introduced by Dent in 2008.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a nonstandard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (geometry of numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a non-standard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (Geometry of Numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.
Resumo:
Digital signatures are an important primitive for building secure systems and are used in most real-world security protocols. However, almost all popular signature schemes are either based on the factoring assumption (RSA) or the hardness of the discrete logarithm problem (DSA/ECDSA). In the case of classical cryptanalytic advances or progress on the development of quantum computers, the hardness of these closely related problems might be seriously weakened. A potential alternative approach is the construction of signature schemes based on the hardness of certain lattice problems that are assumed to be intractable by quantum computers. Due to significant research advancements in recent years, lattice-based schemes have now become practical and appear to be a very viable alternative to number-theoretic cryptography. In this article, we focus on recent developments and the current state of the art in lattice-based digital signatures and provide a comprehensive survey discussing signature schemes with respect to practicality. Additionally, we discuss future research areas that are essential for the continued development of lattice-based cryptography.
Resumo:
Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice based model is that a proliferative population will always eventually fill the lattice. Here we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental setups. Lattice-free simulation results are compared to these mean-field descriptions and to a corresponding lattice-based model. Data from a proliferation experiment is used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.
Resumo:
An encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its chances of producing an encryption of a related message (under a given public key). Fischlin introduced a stronger notion, known as complete non-malleability, which requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti later proposed a comparison-based definition of this security notion, which is more in line with the well-studied definitions proposed by Bellare et al. The authors also provide additional feasibility results by proposing two constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on generic NIZK approach. They left the existence of efficient schemes in the common reference string model as an open problem. Recently, two efficient public-key encryption schemes have been proposed by Libert and Yung, and Barbosa and Farshim, both of them are based on pairing identity-based encryption. At ACISP 2011, Sepahi et al. proposed a method to achieve completely non-malleable encryption in the public-key setting using lattices but there is no security proof for the proposed scheme. In this paper we review the mentioned scheme and provide its security proof in the standard model. Our study shows that Sepahi’s scheme will remain secure even for post-quantum world since there are currently no known quantum algorithms for solving lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms.
Resumo:
This paper presents ongoing work toward constructing efficient completely non-malleable public-key encryption scheme based on lattices in the standard (common reference string) model. An encryption scheme is completely non-malleable if it requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti proposed two inefficient constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Recently, two efficient public-key encryption schemes have been proposed, both of them are based on pairing identity-based encryption.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a non-standard scheme designed specifically for this purpose, or to have secure channels between shareholders. In contrast, we show how to increase the threshold parameter of the standard CRT secret-sharing scheme without secure channels between the shareholders. Our method can thus be applied to existing CRT schemes even if they were set up without consideration to future threshold increases. Our method is a positive cryptographic application for lattice reduction algorithms, and we also use techniques from lattice theory (geometry of numbers) to prove statements about the correctness and information-theoretic security of our constructions.
Resumo:
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient),D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculateDdirectly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant.
Resumo:
Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.