974 resultados para Lattice vibrations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The longwavelength lattice vibrations in potassium, rubidium and caesium azides have been calculated using Born's lattice dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral euxenite were analyzed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The obsd. bands are attributed to the Ti[n.63743]O and (UO2)2+ stretching and bending vibrations, as well as lattice vibrations of rare-earth ions. The Raman bands of euxenite are in harmony with those of the uranyl oxyhydroxides. The mineral euxenite is metamict as is evidenced by the intensity of the U[n.63743]O stretching and bending modes, which are of lower intensity than expected, and with bands that are significantly broader.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)•2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H...O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we present a comparative study of the Raman spectra of alkali halides in relation to the lattice dynamics ofBorn andRaman. It is shown that the experimentally observed limit of the second-order spectra in almost all the cases can be explained well by the Lyddane-Sachs-Teller relation. It is also seen, while, an explanation of the second-order Raman spectrum of a crystal of diamond or zinc blende structure requires the frequencies from the critical points,W, Gamma, X andL inBorn's analysis, the frequencies fromGamma, X andL alone are sufficient and necessary for an interpretation of the same onRaman's model. Some similarities in the determination of the long wave properties of crystals like elastic constants and limiting frequencies of the lattice vibrations in the symmetry directions in both the models are pointed out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the dynamics of hot charge carriers in InP nanowire ensembles containing a range of densities of zinc-blende inclusions along the otherwise wurtzite nanowires. From time-dependent photoluminescence spectra, we extract the temperature of the charge carriers as a function of time after nonresonant excitation. We find that charge-carrier temperature initially decreases rapidly with time in accordance with efficient heat transfer to lattice vibrations. However, cooling rates are subsequently slowed and are significantly lower for nanowires containing a higher density of stacking faults. We conclude that the transfer of charges across the type II interface is followed by release of additional energy to the lattice, which raises the phonon bath temperature above equilibrium and impedes the carrier cooling occurring through interaction with such phonons. These results demonstrate that type II heterointerfaces in semiconductor nanowires can sustain a hot charge-carrier distribution over an extended time period. In photovoltaic applications, such heterointerfaces may hence both reduce recombination rates and limit energy losses by allowing hot-carrier harvesting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many ultrafast structural phenomena in solids at high fluences are related to the hardening or softening of particular lattice vibrations at lower fluences. In this paper we relate femtosecond-laser-induced phonon frequency changes to changes in the electronic density of states, which need to be evaluated only in the electronic ground state, following phonon displacement patterns. We illustrate this relationship for a particular lattice vibration of magnesium, for which we—surprisingly—find that there is both softening and hardening as a function of the femtosecond-laser fluence. Using our theory, we explain these behaviours as arising from Van Hove singularities: We show that at low excitation densities Van Hove singularities near the Fermi level dominate the change of the phonon frequency while at higher excitations Van Hove singularities that are further away in energy also become important. We expect that our theory can as well shed light on the effects of laser excitation of other materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have examined the thermodynamic stability of a-Fe2O3–Cr2O3 solid solutions as a function of temperature and composition, using a combination of statistical mechanics with atomistic simulation techniques based on classical interatomic potentials, and the addition of a model magnetic interaction Hamiltonian. Our calculations show that the segregation of the Fe and Cr cations is marginally favourable in energy compared to any other cation distribution, and in fact the energy of any cation configuration of the mixed system is always slightly higher than the combined energies of equivalent amounts of the pure oxides separately. However, the positive enthalpy of mixing is small enough to allow the stabilisation of highly disordered solid solutions at temperatures of B400 K or higher. We have investigated the degree of cation disorder and the effective cell parameters of the mixed oxide as functions of temperature and composition, and we discuss the effect of magnetic interactions and lattice vibrations on the stability of the solid solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present investigation some spectroscopic properties of several lanthanide squarate hydrates are reported. The Raman spectra show the same distinctive Jahn-Teller intensity pattern for non-totally symmetric modes, as previously observed for the free anion. In the case of the terbium salt, the Tb3+ emission is very intense even at room temperature, revealing an efficient excitation via the ligand electronic levels. The Tb3+ dilution in Gd3+ or La3+ hosts increases this excitation efficiency without any appreciable variation in the 5D4 excited-state lifetime. However, the Eu3+ emission is very weak, with excited states located above the 5D2 level (ca. 21 550 cm-1) being completely quenched at room temperature. At lower temperatures higher-lying levels are not so efficiently quenched. The broad band observed in the UV excitation spectra of Eu3+ and Tb3+ is easily assigned to an intra-ligand transition leading to ligand-to-lanthanide ion energy transfer processes. As observed for Tb3+, Eu3+ dilution in Gd3+ or La3+ hosts also increases the relative emission intensity mediated by the ligand, without variation in the 5D0 excited-state lifetime. The Eu3+ 5D0 excitation spectra show vibronic structures that can be interpreted on the basis of the data available from the vibrational spectra. An increase in the vibronic intensities is observed as the lanthanide concentration is increased. © 1994.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transparent glass ceramics containing β-PbF2:Er 3+ nanocrystals were obtained through appropriate thermal treatments of a glass of molar composition 60PbGeO3-10PbF2-30CdF 2 doped with 0.5 mol% Er3+. Their optical properties, as well as upconversion processes among erbium ions in the glass and glass ceramic matrix were studied. From absorption spectra, Judd-Ofelt parameters and radiative transition rates for several excited levels were calculated. Emission spectra in the visible and NIR regions were collected, and stimulated emission cross sections were obtained by McCumber theory for the 4F 13/2→4I15/2 transition at 1.5 μm. Red and green upconversion emissions were measured in glass and glass ceramics upon excitation at 980 nm; lifetimes were measured in order to assess the upconversion mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.