999 resultados para Lattice defects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several vibrational bands were observed near 3100 cm(-1) in GaN that had been implanted with hydrogen at room temperature and subsequently annealed, Our results indicate that these bands are due to nitrogen-dangling-bond defects created by the implantation that an decorated by hydrogen, The frequencies are close to those predicted recently for V-Ga-H-n complexes, leading us to tentatively assign the new lines to V-Ga defects decorated with different numbers of H atoms. (C) 1998 American Institute of Physics. [S0003-6951(98)03614-6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ZnO luminescent properties are strongly influenced by the preparation method and they are principally related to electronic and crystalline structures. This work reports about the correlation among luminescence properties of ZnO, obtained from zinc hydroxycarbonate, and crystalline lattice defects, microstrain, as function of thermal treatment. The crystallite size increase and the qualitative microstrain, obtained by Williamson-Hall plots, decrease as function of temperature. The evolution of electronic defects is analyzed by luminescence spectroscopy based on energy of the electronic transitions. From excitation spectrum, it is verified two bands around 377 nm and 405 nm attributed to the transitions between valence-conduction bands and valence band to interstitial zinc level, respectively. The emission spectra of sample treated at 600 degreesC shows large band at 670 nm. However, the green emission around 530 nm is observed for samples treated at 900 degreesC. The intensities of excitation and emission bands are associated with the increase of the electronic defects that depend on the strain lattice decrease. The lowest strain lattice results on the best green luminescent properties of zinc oxide. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Defects in as-grown U3+ : CaF2 crystals grown with or without PbF2 as an oxygen scavenger were studied using Raman spectra, thermoluminescence glow curves, and additional absorption (AA) spectra induced by heating and gamma-irradiation. The effects of heating and irradiation on as-grown U3+: CaF2 crystals are similar, accompanied by the elimination of H-type centers and production of F-type centers. U3+ is demonstrated to act as an electron donor in the CaF2 lattice, which is oxidized to the tetravalent form by thermal activation or gamma-irradiation. In the absence of PbF(2)as an oxygen scavenger, the as-grown U3+:CaF2 crystals contain many more lattice defects in terms of both quantity and type, due to the presence of O2- impurities. Some of these defects can recombine with each other in the process of heating and gamma-irradiation. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrafine powders of SrTiO3 are prepared at 100–150°C by the hydrothermal method, starting from TiO2·xH2O gel and Sr(OH)2 and H2O-isopropanol mixed solvent as the medium, The X-ray diffractograms of the powder show line broadening. The minimum crystallite size obtained ranges from 5 to 20nm with 20% H2O-80% C3H7OH as the reaction medium, as estimated from X-ray half-peak widths and TEM studies. The electron diffraction results indicate high concentration of lattice defects in these crystallites. The optical spectra of the particle suspensions in water show that the absorption around the band gap is considerably broadened, together with the appearance of maxima in the far ultraviolet. Aqueous suspensions of SrTiO3 powders, as such, do not produce H2 or O2 on UV irradiation. After coating with rhodium, H2 and O2 are evolved on illumination. However, the turn over number of O2 is lower than the stoichiometrically expected values from the corresponding values of H2. No correlation of the photocatalytic activity with surface area is observed. The activity of Rh-SrTiO3 slowly deteriorates with extended period of irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The semiconductivity inMTiO3 (M=Ba, Sr) in the temperature range of practical applications is greatly influenced by the electronic charge redistribution among the acceptor states, arising from the frozen cation vacancies as well as the transition metal ion impurities. The conductivity measurements and defect chemistry investigations above 800 K indicate that the predominant lattice defects areM− and oxygen vacancies. There is dominantp-type conduction at higherP O 2 values in acceptor doped materials at high temperatures. However, they are insulating solids around room temperature due to the redistribution of electrons between the neutral, singly-or doubly-ionised acceptor states. Results fromepr and resistivity measurements show that the above charge redistribution is dependent on crystal structure changes. Hence the electron or hole loss by the acceptor states is influenced by the soft modes which also accounts for the differences in electrical properties of BaTiO3 and SrTiO3. The results are also useful in explaining the positive temperature coefficient in resistance and some photo-electrochemcial properties of these solids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk, polycrystalline MgB2 samples containing 2.5 wt.% multi-walled carbon nanotubes (CNTs) have been prepared by conventional solid state reaction at 800 °C. The effect of Mg precursor powders composed of two different particle sizes on the critical current density (Jc) of the as-sintered samples has been investigated. An enhancement of Jc at high field has been observed in MgB2 samples containing CNTs prepared with fine Mg powders, whereas the values of Jc in the sample prepared using the coarser Mg powders was slightly decreased. These results contrast significantly with measurements on pure, undoped, MgB2 samples prepared from the same Mg precursor powders. They suggest that carbon substitution into the MgB2 lattice, which accounts for increased flux pinning, and therefore Jc, is more effective in precursor Mg powders with a larger surface area. Rather surprisingly, the so-called fishtail effect, observed typically in MgB2 single crystals and in the (RE)BCO family of high temperature superconductors (HTSs), was observed in both sets of CNT-containing polycrystalline samples as a result of lattice defects associated with C substitution. Significantly, analytical fits to the data for each sample suggest that the same flux pinning mechanism accounts for the fishtail effect in polycrystalline MgB2 and (RE)BCO. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physical properties of solid matter are basically influenced by the existence of lattice defects; as a result the study of crystal defects has assumed a central position in solid state physics and materials science. The study of dislocations ixa single crystals can yield a great deal of information on the mechanical properties of materials. In order to secure a full understanding of the processes taking place in semiconducting materials, it is important to investigate the microhardness of these materials-—the most reliable method of determining the fine structure of crystals, the revelation of micro—inhomogenities in the distribution of impurities, the effect of dislocation density on the mechanical properties of crystals etc. Basically electrical conductivity in single crystals is a defect controlled phenomenon and hence detailed investigation of the electrical properties of these materials is one of the best available methods for the study of defects in them. In the present thesis a series of detailed studies carried out in Te—Se system, Bi2Te3 and In2Te3 crystals using surface topographical, dislocation and microindentation analysis as well as electrical measurements are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic beta-spodumene polycrystals were produced by a devitrification method, undoped and doped with controlled concentration of the Ce3+ or Mn2+ impurities. The TL properties of these polycrystals and of a colourless natural spodumene were investigated. Some dosimetric properties of them were also discussed. The dopants do not affect the TL peak position with respect a pure beta-spodumene sample but the intensity of the TL peaks at 180 and 280 degrees C is improved in the Ce-doped one. The Ce3+ ions do not participate in the TL light emission; on the other hand, the presence of Mn2+ ions cause an emission band around 600-650 nm in the TL light emission spectrum. The emission around 400 nm appears in the TL emission spectrum of all the samples and it is believed to correspond to aluminium centre ([AlO4/hole](0)) recombination with an electron. The more sensitive samples to gamma-radiation are the colourless natural spodumene and the Ce-doped synthetic spodumene, respectively. The colourless natural spodumene crystal shows a TL peak at 180 degrees C suitable for dosimetry, while for Ce-doped beta-spodumene sample the TL peaks at 180 and 280 degrees C can be used. No fading of the TL emission was observed for Ce-doped beta-spodumene sample up to 80 days after irradiation. (C) 2007 Elsevier Ltd. All rights reserved.