992 resultados para Lattice Boltzmann Simulation
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Resumo:
A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.
Resumo:
This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.
Resumo:
The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be "compressible" and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc,, can be expected.
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.
Resumo:
The Lattice-Boltzmann method (LBM), a promising new particle-based simulation technique for complex and multiscale fluid flows, has seen tremendous adoption in recent years in computational fluid dynamics. Even with a state-of-the-art LBM solver such as Palabos, a user has to still manually write the program using library-supplied primitives. We propose an automated code generator for a class of LBM computations with the objective to achieve high performance on modern architectures. Few studies have looked at time tiling for LBM codes. We exploit a key similarity between stencils and LBM to enable polyhedral optimizations and in turn time tiling for LBM. We also characterize the performance of LBM with the Roofline performance model. Experimental results for standard LBM simulations like Lid Driven Cavity, Flow Past Cylinder, and Poiseuille Flow show that our scheme consistently outperforms Palabos-on average by up to 3x while running on 16 cores of an Intel Xeon (Sandybridge). We also obtain an improvement of 2.47x on the SPEC LBM benchmark.
Resumo:
In this paper we present a lattice Boltzmann model to simulate compressible flows by introducing an attractive force. This scheme has two main advantages: one is to soften sound speed effectively, which greatly raises the Mach number (up to 5); another is its relative simple procedure. Simulations of the March cone and the comparison between theoretical expectations and simulations demonstrate that the scheme is effective in the simulation of compressible flows with high Mach numbers, which would create many new applications.
Resumo:
引入了一种二元Lattice Boltzmann Model(LBM),实现了两种液体组成的混合流的模拟.不同于其它的类似模型,它区分考虑了流体的粘性和扩散特性,可以很容易地模拟各种互溶或者不互溶的混合流现象.此外,由于LBM的运算大都是线性的局部运算,这使得它很容易在可编程图形处理器(Graphics Process Unit,GPU)上进行加速,从而进行实时模拟.给出了若干二元混合流的模拟结果.
Resumo:
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.
Resumo:
An improved free energy approach Lattice Boltzmann model(LBM) is proposed by introducing a forcing term instead of the pressure tensor. This model can reach the proper thermodynamic equilibrium after enough simulation time. On the basis of this model, the phase separation in binary polymer mixtures is studied by applying a Flory-Huggins-type free energy. The numerical results show good agreement with the analytic coexistence curve. This model can also be used to study the coarsening of microdomains in binary polymer mixtures at the early and intermediate stages.
Resumo:
In order to understand the coarsening of microdomains in symmetric diblock copolymers at the late stage, a model for block copolymers is proposed. By incorporating the self consistent field theory with the free energy approach Lattice Boltzmann model, hydrodynamic interactions can be considered. Compared with models based on Ginzburg-Landau free energy, this model does not employ phenomenological free energies to describe systems. The model is verified by comparing the simulation results obtained using this method with those of a dynamical version of the self consistent mean field theory. After that,the growth exponents of the characteristic domain size for symmetric block copolymers at late stage are studied. It is found that the viscosity of the system affects the growth exponents greatly, although the growth exponents are all less than 1/3 Furthermore, the relations between the growth exponent, the interaction parameter and the chain length are studied.
Resumo:
A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the Pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis. stenosis. aneurysm, etc.