990 resultados para Latex compounding,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present study was to explore ways of making latex products more cost effective and versatile. Polyethylene glycol was identified as a surface active agent in latex compounds which improves the filler-polymer interaction and also distributes the filler more uniformly. The use of such surface active agents can develop filled latex products with improved mechanical properties at a lower cost. In this study dispersions of carbon black and silica were successfully added to NR latex under high speed stirring without destabilizing latex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO 2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The microstructure of SiO2 and nanocomposites with different SiO 2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO 2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2? 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NR/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 4 wt% is developed by incorporating latex compounding with self-assembly techniques. The SiO2 nanoparticles are homogenouslydistributed throughout the NR matrix as spherical nano-clusters with an average size of 75 nm. In comparison with the host NR, the thermal resistance of the nanocomposite is significantly improved. The degradation temperatures (T), reaction activation energy(E), and reaction order (n) of the nanocomposite are markedly higher than those of the pure NR, due to significant retardant effect of the SiO2 nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel natural rubber/silica (NR/SiO2) nanocomposite is developed by combining self-assembly and latex-compounding techniques. The results show that the SiO2 nanoparticles are homogenously distributed throughout NR matrix as nano-clusters with an average size ranged from 60 to 150 nm when the SiO2 loading is less than 6.5 wt%. At low SiO2 contents (less-than-or-equals, slant4.0 wt%), the NR latex (NRL) and SiO2 particles are assembled as a core-shell structure by employing poly (diallyldimethylammonium chloride) (PDDA) as an inter-medium, and only primary aggregations of SiO2 are observed. When more SiO2 is loaded, secondary aggregations of SiO2 nanoparticles are gradually generated, and the size of SiO2 cluster dramatically increases. The thermal/thermooxidative resistance and mechanical properties of NR/SiO2 nanocomposites are compared to the NR host. The nanocomposites, particularly when the SiO2 nanoparticles are uniformly dispersed, possess significantly enhanced thermal resistance and mechanical properties, which are strongly depended on the morphology of nanocomposites. The NR/SiO2 has great potential to manufacture medical protective products with high performances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared bycombining self-assembly and latex compounding techniques. The acid-treated MWCNTs (H2SO4: HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostaticadhesion. In the second assembling, NR/MWCNTs composites were developed by mixing MWCNTs/PDDAsolution with NR latex. The results show that MWCNTs are homogenously distributed throughout the NRmatrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents areless than 3 wt%. Moreover, the addition of the MWCNTs brings about the remarkable enhancement in tensilestrength and crosslink density compared with the NR host, and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded, aggregations of MWCNTs are gradually generated, and the tensile strengthand crosslink both decrease to a certain extent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrically conductive elastic nanocomposites with well-organized graphene architectures offer significant improvement in various properties. However, achieving desirable graphene architectures in cross-linked rubber is challenging due to high viscosity and cross-linked nature of rubber matrices. Here, three dimensional (3D) interconnected graphene networks in natural rubber (NR) matrix are framed with self-assembly integrating latex compounding technology by employing electrostatic adsorption between poly(diallyldimethylammonium chloride) modified graphene (positively charged) and NR latex particles (negatively charged) as the driving force. The 3D graphene structure endows the resulted nanocomposites with excellent electrical conductivity of 7.31. S/m with a graphene content of 4.16. vol.%, extremely low percolation threshold of 0.21. vol.% and also analogous reinforcement in mechanical properties. The developed strategy will provide a practical approach for developing elastic nanocomposites with multi-functional properties. © 2014 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Condoms are widely accepted as a contraceptive for family planning and population control. It is also accepted as the most effective barrier against sexually transmitted diseases, especially AIDS, the incurable disease. But presence of pinholes and low film strength of condoms make it unsuitable for the purpose. Quality improvement of condoms by reducing the pinhole formation and increasing the film strength is thus an essential requirement for population control as well as for preventing the spread of sexually transmitted diseases. Strict implementation of WHO specification of condoms further increases the rejection percentage. This causes higher rejection loss to condom manufacturers because the defects could be identified only at the final stage of processing. If the influence of various factors which cause these defects is known, manufacturers can take remedial measures to reduce the defectives so that rejection loss can be decreased and quality of condoms increased. In the present study, it was proposed to conduct experiments to improve the quality of condoms by reducing the pinhole rejection percentage and increasing the tensile properties, burst volume, and burst pressure. Ageing property improvement also was an important target among other parameters. Until a cure for AIDS is found, a high quality latex condom is the only effective device in the prevention of the spread of HIV, AIDS and STD's. Hence it is all the more necessary to have high quality condoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is observed that reclamation of natural rubber latex based rubber using 2,2'-dibenzamidodiphenvldisulphide as reclaiming agent is an optional methodology for recycling of waste latex rubber (WLR). For progressive replacement of virgin natural rubber by the reclaim, two alternatives curing system were investigated: adjustment or reduction of the curing system with increasing reclaim content, to compensate for the extra amount of curatives brought along by the reclaim. For fixed curing system, as if the reclaim were equivalent to virgin NR. The cure behavior, final crosslink density and distribution, mechanical properties, and dynamic viscoelastic properties of the blends with reclaimed WLR are measured and compared with the virgin compound. The morphology of the blends, sulfur migration, and final distribution are analyzed.The mechanical and dynamic viscoelastic properties deteriorate for both curing systems, but to a lesser extent for fixed curing system compared to adjusted curing system. With the fixed cure system, many properties like tensile strength and compression set do still deteriorate, but tan 6 and Mrrr„/Murxr, representative for the rolling resistance of tires are improved. On the other hand, with the adjusted cure system both mechanical and dynamic properties still deteriorate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of short fibers as reinforcing fillers in rubber composites is on an increasing trend. They are popular due to the possibility of obtaining anisotropic properties, ease of processing and economy. In the preparation of these composites short fibers are incorporated on two roll mixing mills or in internal mixers. This is a high energy intensive time consuming process. This calls for developing less energy intensive and less time consuming processes for incorporation and distribution of short fibers in the rubber matrix. One method for this is to incorporate fibers in the latex stage. The present study is primarily to optimize the preparation of short fiber- natural rubber composite by latex stage compounding and to evaluate the resulting composites in terms of mechanical, dynamic mechanical and thermal properties. A synthetic fiber (Nylon) and a natural fiber (Coir) are used to evaluate the advantages of the processing through latex stage. To extract the full reinforcing potential of the coir fibers the macro fibers are converted to micro fibers through chemical and mechanical means. The thesis is presented in 7 chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles have been widely used as filler in polymer because of their unique reinforcing effect. There are many compounding methods for nanocomposites. The recent development on latex nanocomposites, a group of special nanocomposites, is reviewed in this chapter. They include carbon black/latex nanocomposite, silica/latex nanocomposite, layered silicate/latex nanocomposite, ZnO/latex nanocomposite, carbon nanotubellatex nanocomposite, lignin/latex nanocomposite, starch/latex nanocomposite, nano-fiber/latex nanocomposite, and Chitin whiskers/latex nanocomposite. Advanced compounding techniques and the latest advance on these latex nanocomposites are described. The nanoreinforcing theories of latex nanocomposites are also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fair Work Australia is to provide the institutional framework for the Australian industrial relations system from January 2010. Its creation provides the opportunity to improve minimum labour standards’ enforcement in Australia. However, the experience of the past must be appreciated and traditional assumptions about the operation of the Australian enforcement system discarded if the new institution is to be effective in its role. This paper focuses on the role of unions in enforcement as well as institutional location issues to expose a number of central enforcement problems that those seeking to establish new systems and processes should consider. A number of recommendations in respect of the structure of Fair Work Australia and the continuing role of unions are suggested.