935 resultados para Latent variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decision to patent a technology is a difficult one to make for the top management of any organization. The expected value that the patent might deliver in the market is an important factor that impacts this judgement. Earlier researchers have suggested that patent prices are better indicators of value of a patent and that auction prices are the best way of determining value. However, the lack of public data on pricing has prevented research on understanding the dynamics of patent pricing. Our paper uses singleton patent auction price data of Ocean Tomo LLC to study the prices of patents. We describe price characteristics of these patents. The price of these patents was correlated with their age, and a significant correlation was found. A price - age matrix was developed and we describe the price characteristics of patents using four quadrants of the matrix, namely young and old patents with low and high prices. We also found that patents owned by small firms get transacted more often and inventor owned patents attracted a better price than assignee owned patents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on studying the relationship between patent latent variables and patent price. From the existing literature, seven patent latent variables, namely age, generality, originality, foreign filings, technology field, forward citations, and backward citations were identified as having an influence on patent value. We used Ocean Tomo's patent auction price data in this study. We transformed the price and the predictor variables (excluding the dummy variables) to its logarithmic value. The OLS estimates revealed that forward citations and foreign filings were positively correlated to price. Both the variables jointly explained 14.79% of the variance in patent pricing. We did not find sufficient evidence to come up with any definite conclusions on the relationship between price and the variables such as age, technology field, generality, backward citations and originality. The Heckman two-stage sample selection model was used to test for selection bias. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dealing with latent constructs (loaded by reflective and congeneric measures) cross-culturally compared means studying how these unobserved variables vary, and/or covary each other, after controlling for possibly disturbing cultural forces. This yields to the so-called ‘measurement invariance’ matter that refers to the extent to which data collected by the same multi-item measurement instrument (i.e., self-reported questionnaire of items underlying common latent constructs) are comparable across different cultural environments. As a matter of fact, it would be unthinkable exploring latent variables heterogeneity (e.g., latent means; latent levels of deviations from the means (i.e., latent variances), latent levels of shared variation from the respective means (i.e., latent covariances), levels of magnitude of structural path coefficients with regard to causal relations among latent variables) across different populations without controlling for cultural bias in the underlying measures. Furthermore, it would be unrealistic to assess this latter correction without using a framework that is able to take into account all these potential cultural biases across populations simultaneously. Since the real world ‘acts’ in a simultaneous way as well. As a consequence, I, as researcher, may want to control for cultural forces hypothesizing they are all acting at the same time throughout groups of comparison and therefore examining if they are inflating or suppressing my new estimations with hierarchical nested constraints on the original estimated parameters. Multi Sample Structural Equation Modeling-based Confirmatory Factor Analysis (MS-SEM-based CFA) still represents a dominant and flexible statistical framework to work out this potential cultural bias in a simultaneous way. With this dissertation I wanted to make an attempt to introduce new viewpoints on measurement invariance handled under covariance-based SEM framework by means of a consumer behavior modeling application on functional food choices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated choice and latent variable (ICLV) models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM) for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work proposes a method based on CLV (Clustering around Latent Variables) for identifying groups of consumers in L-shape data. This kind of datastructure is very common in consumer studies where a panel of consumers is asked to assess the global liking of a certain number of products and then, preference scores are arranged in a two-way table Y. External information on both products (physicalchemical description or sensory attributes) and consumers (socio-demographic background, purchase behaviours or consumption habits) may be available in a row descriptor matrix X and in a column descriptor matrix Z respectively. The aim of this method is to automatically provide a consumer segmentation where all the three matrices play an active role in the classification, getting homogeneous groups from all points of view: preference, products and consumer characteristics. The proposed clustering method is illustrated on data from preference studies on food products: juices based on berry fruits and traditional cheeses from Trentino. The hedonic ratings given by the consumer panel on the products under study were explained with respect to the product chemical compounds, sensory evaluation and consumer socio-demographic information, purchase behaviour and consumption habits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbourhood structure of the data in a sense that objects in the same semantic concept have similar latent values, and objects in different concepts have dissimilar latent values. We formulate the supervised infinite latent variable problem based on an intuitive principle of pulling objects together if they are of the same type, and pushing them apart if they are not. We then combine this principle with a flexible Indian Buffet Process prior on the latent variables. We show that the inferred supervised latent variables can be directly used to perform a nearest neighbour search for the purpose of retrieval. We introduce a new application of dynamically extending hash codes, and show how to effectively couple the structure of the hash codes with continuously growing structure of the neighbourhood preserving infinite latent feature space.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There has long been substantial interest in understanding consumer food choices, where a key complexity in this context is the potentially large amount of heterogeneity in tastes across individual consumers, as well as the role of underlying attitudes towards food and cooking. The present paper underlines that both tastes and attitudes are unobserved, and makes the case for a latent variable treatment of these components. Using empirical data collected in Northern Ireland as part of a wider study to elicit intra-household trade-offs between home-cooked meal options, we show how these latent sensitivities and attitudes drive both the choice behaviour as well as the answers to supplementary questions. We find significant heterogeneity across respondents in these underlying factors and show how incorporating them in our models leads to important insights into preferences. 

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Creep of Steel Fiber Reinforced Concrete (SFRC) under flexural loads in the cracked state and to what extent different factors determine creep behaviour are quite understudied topics within the general field of SFRC mechanical properties. A series of prismatic specimens have been produced and subjected to sustained flexural loads. The effect of a number of variables (fiber length and slenderness, fiber content, and concrete compressive strength) has been studied in a comprehensive fashion. Twelve response variables (creep parameters measured at different times) have been retained as descriptive of flexural creep behaviour. Multivariate techniques have been used: the experimental results have been projected to their latent structure by means of Principal Components Analysis (PCA), so that all the information has been reduced to a set of three latent variables. They have been related to the variables considered and statistical significance of their effects on creep behaviour has been assessed. The result is a unified view on the effects of the different variables considered upon creep behaviour: fiber content and fiber slenderness have been detected to clearly modify the effect that load ratio has on flexural creep behaviour.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.