929 resultados para Latent class model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article develops a latent class model for estimating willingness-to-pay for public goods using simultaneously contingent valuation (CV) and attitudinal data capturing protest attitudes related to the lack of trust in public institutions providing those goods. A measure of the social cost associated with protest responses and the consequent loss in potential contributions for providing the public good is proposed. The presence of potential justification biases is further considered, that is, the possibility that for psychological reasons the response to the CV question affects the answers to the attitudinal questions. The results from our empirical application suggest that psychological factors should not be ignored in CV estimation for policy purposes, allowing for a correct identification of protest responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting and suitable alternative to models with complex structures that involve the general case of several conditionally independent diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was considered as a factor of stratification in the model. The general model with stratification of the population performed better in comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit (c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from an attitudinal survey and stated preference ranking experiment conducted in two urban European interchanges (i.e. City-HUBs) in Madrid (Spain) and Thessaloniki (Greece) show that the importance that City-HUBs users attach to the intermodal infrastructure varies strongly as a function of their perceptions of time spent in the interchange (i.e.intermodal transfer and waiting time). A principal components analysis allocates respondents (i.e. city-HUB users) to two classes with substantially different perceptions of time saving when they make a transfer and of time using during their waiting time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airway disease in childhood comprises a heterogeneous group of disorders. Attempts to distinguish different phenotypes have generally considered few disease dimensions. The present study examines phenotypes of childhood wheeze and chronic cough, by fitting a statistical model to data representing multiple disease dimensions. From a population-based, longitudinal cohort study of 1,650 preschool children, 319 with parent-reported wheeze or chronic cough were included. Phenotypes were identified by latent class analysis using data on symptoms, skin-prick tests, lung function and airway responsiveness from two preschool surveys. These phenotypes were then compared with respect to outcome at school age. The model distinguished three phenotypes of wheeze and two phenotypes of chronic cough. Subsequent wheeze, chronic cough and inhaler use at school age differed clearly between the five phenotypes. The wheeze phenotypes shared features with previously described entities and partly reconciled discrepancies between existing sets of phenotype labels. This novel, multidimensional approach has the potential to identify clinically relevant phenotypes, not only in paediatric disorders but also in adult obstructive airway diseases, where phenotype definition is an equally important issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questionnaire data may contain missing values because certain questions do not apply to all respondents. For instance, questions addressing particular attributes of a symptom, such as frequency, triggers or seasonality, are only applicable to those who have experienced the symptom, while for those who have not, responses to these items will be missing. This missing information does not fall into the category 'missing by design', rather the features of interest do not exist and cannot be measured regardless of survey design. Analysis of responses to such conditional items is therefore typically restricted to the subpopulation in which they apply. This article is concerned with joint multivariate modelling of responses to both unconditional and conditional items without restricting the analysis to this subpopulation. Such an approach is of interest when the distributions of both types of responses are thought to be determined by common parameters affecting the whole population. By integrating the conditional item structure into the model, inference can be based both on unconditional data from the entire population and on conditional data from subjects for whom they exist. This approach opens new possibilities for multivariate analysis of such data. We apply this approach to latent class modelling and provide an example using data on respiratory symptoms (wheeze and cough) in children. Conditional data structures such as that considered here are common in medical research settings and, although our focus is on latent class models, the approach can be applied to other multivariate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society UHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2) =0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article applies methods of latent class analysis (LCA) to data on lifetime illicit drug use in order to determine whether qualitatively distinct classes of illicit drug users can be identified. Self-report data on lifetime illicit drug use (cannabis, stimulants, hallucinogens, sedatives, inhalants, cocaine, opioids and solvents) collected from a sample of 6265 Australian twins (average age 30 years) were analyzed using LCA. Rates of childhood sexual and physical abuse, lifetime alcohol and tobacco dependence, symptoms of illicit drug abuse/dependence and psychiatric comorbidity were compared across classes using multinomial logistic regression. LCA identified a 5-class model: Class 1 (68.5%) had low risks of the use of all drugs except cannabis; Class 2 (17.8%) had moderate risks of the use of all drugs; Class 3 (6.6%) had high rates of cocaine, other stimulant and hallucinogen use but lower risks for the use of sedatives or opioids. Conversely, Class 4 (3.0%) had relatively low risks of cocaine, other stimulant or hallucinogen use but high rates of sedative and opioid use. Finally, Class 5 (4.2%) had uniformly high probabilities for the use of all drugs. Rates of psychiatric comorbidity were highest in the polydrug class although the sedative/opioid class had elevated rates of depression/suicidal behaviors and exposure to childhood abuse. Aggregation of population-level data may obscure important subgroup differences in patterns of illicit drug use and psychiatric comorbidity. Further exploration of a 'self-medicating' subgroup is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Current diagnostic criteria cannot capture the full range of bipolar spectrum. This study aims to clarify the natural co-segregation of manic-depressive symptoms occurring in the general population. Methods: Using data from the Sao Paulo Catchment Area Study, latent class analysis (LCA) was applied to eleven manic and fourteen depressive symptoms assessed through CIDI 1.1 in 1464 subjects from a community-based study in Sao Paulo, Brazil. All manic symptoms were assessed, regardless of presence of euphoria or irritability, and demographics, services used, suicidality and CIDI/DSM-IIIR mood disorders used to external validate the classes. Results: The four obtained classes were labeled Euthymics (EU; 49.1%), Mild Affectives (MA; 31.1%), Bipolars (BIP; 10.7%), and Depressives (DEP; 9%). BIP and DEP classes represented bipolar and depressive spectra, respectively. Compared to DEP class, BIP exhibited more atypical depressive characteristics (hypersomnia and increase in appetite and/or weight gain), risk of suicide, and use of services. Depressives had rates of atypical symptoms and suicidality comparable to oligosymptomatic MA class subjects. Limitations: The use of lay interviewers and DSM-IIIR diagnostic criteria, which are more restrictive than the currently used DSM-IV TR. Conclusions: Findings of high prevalence of bipolar spectrum and of atypical symptoms and suicidality as indicators of bipolarity are of great clinical importance, due to different treatment needs, and higher severity. Lifetime sub-affective and syndromic manic symptoms are clinically significant, arguing for the need Of revising DSM bipolar spectrum categories. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Recent evidence suggests that there may be more than one Gilles de la Tourette syndrome (GTS)/tic disorder phenotype. However, little is known about the common patterns of these GTS/tic disorder-related comorbidities. In addition, sex-specific phenomenological data of GTS/tic disorder-affected adults are rare. Therefore, this community-based study used latent class analyses (LCA) to investigate sex-related and non-sex-related subtypes of GTS/tic disorders and their most common comorbidities. METHODS: The data were drawn from the PsyCoLaus study (n = 3691), a population-based survey conducted in Lausanne, Switzerland. LCA were performed on the data of 80 subjects manifesting motor/vocal tics during their childhood/adolescence. Comorbid attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, depressive, phobia and panic symptoms/syndromes comprised the selected indicators. The resultant classes were characterized by psychosocial correlates. RESULTS: In LCA, four latent classes provided the best fit to the data. We identified two male-related classes. The first class exhibited both ADHD and depression. The second class comprised males with only depression. Class three was a female-related class depicting obsessive thoughts/compulsive acts, phobias and panic attacks. This class manifested high psychosocial impairment. Class four had a balanced sex proportion and comorbid symptoms/syndromes such as phobias and panic attacks. The complementary occurrence of comorbid obsessive thoughts/compulsive acts and ADHD impulsivity was remarkable. CONCLUSIONS: To the best of our knowledge, this is the first study applying LCA to community data of GTS symptoms/tic disorder-affected persons. Our findings support the utility of differentiating GTS/tic disorder subphenotypes on the basis of comorbid syndromes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Switzerland has a complex human immunodeficiency virus (HIV) epidemic involving several populations. We examined transmission of HIV type 1 (HIV-1) in a national cohort study. Latent class analysis was used to identify socioeconomic and behavioral groups among 6,027 patients enrolled in the Swiss HIV Cohort Study between 2000 and 2011. Phylogenetic analysis of sequence data, available for 4,013 patients, was used to identify transmission clusters. Concordance between sociobehavioral groups and transmission clusters was assessed in correlation and multiple correspondence analyses. A total of 2,696 patients were infected with subtype B, 203 with subtype C, 196 with subtype A, and 733 with recombinant subtypes (mainly CRF02_AG and CRF01_AE). Latent class analysis identified 8 patient groups. Most transmission clusters of subtype B were shared between groups of gay men (groups 1-3) or between the heterosexual groups "heterosexual people of lower socioeconomic position" (group 4) and "injection drug users" (group 8). Clusters linking homosexual and heterosexual groups were associated with "older heterosexual and gay people on welfare" (group 5). "Migrant women in heterosexual partnerships" (group 6) and "heterosexual migrants on welfare" (group 7) shared non-B clusters with groups 4 and 5. Combining approaches from social and molecular epidemiology can provide insights into HIV-1 transmission and inform the design of prevention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to identify different patterns of gambling activities (PGAs) and to investigate how PGAs differed in gambling problems, substance use outcomes, personality traits and coping strategies. A representative sample of 4989 young Swiss males completed a questionnaire assessing seven distinct gambling activities, gambling problems, substance use outcomes, personality traits and coping strategies. PGAs were identified using latent class analysis (LCA). Differences between PGAs in gambling and substance use outcomes, personality traits and coping strategies were tested. LCA identified six different PGAs. With regard to gambling and substance use outcomes, the three most problematic PGAs were extensive gamblers, followed by private gamblers, and electronic lottery and casino gamblers, respectively. By contrast, the three least detrimental PGAs were rare or non-gamblers, lottery only gamblers and casino gamblers. With regard to personality traits, compared with rare or non-gamblers, private and casino gamblers reported higher levels of sensation seeking. Electronic lottery and casino gamblers, private gamblers and extensive gamblers had higher levels of aggression-hostility. Extensive and casino gamblers reported higher levels of sociability, whereas casino gamblers reported lower levels of anxiety-neuroticism. Extensive gamblers used more maladaptive and less adaptive coping strategies than other groups. Results suggest that gambling is not a homogeneous activity since different types of gamblers exist according to the PGA they are engaged in. Extensive gamblers, electronic and casino gamblers and private gamblers may have the most problematic PGAs. Personality traits and coping skills may predispose individuals to PGAs associated with more or less negative outcomes.