969 resultados para Late Triassic Coal
Resumo:
Samples from the Callide Coal Measures, Queensland, Australia, containing the minor maceral, micrinite, have been studied using optical and electron-optical techniques to determine the precise compositional and structural nature of micrinite when in association with vitrinite macerals. Emphasis has been placed on direct spatial correlation of optical and electron-optical data due to the fine grain size (<1μm) of micrinite and its relatively low abundance compared with other macerals in the Callide Basin coals. Precise elemental, morphological and structural data, including electron diffraction, provides unambiguous evidence for the presence of kaolinite in the component known as micrinite. Indeed, micrinite consists predominantly of fine-grained kaolinite (>90 per cent of the component) and, as such, should not be considered a maceral.
Resumo:
The Triassic Argilo-Gréseux Inférieur Formation (TAG-I) is one of the principal hydrocarbon reservoirs in the Berkine Basin of Algeria. Sedimentological studies have shown that it exhibits marked spatial and temporal facies variations on both a local field scale and a regional basinal scale. This variability, combined with a lack of diagnostic flora and fauna, makes regional correlation within the unit difficult. In turn, the lack of a consistent regional stratigraphic framework hampers the comparison of the various correlation schemes devised by operators in the basin. Contrasting the TAG-I in Blocks 402 and 405a exemplifies the problems encountered when attempting regionally to define a correlation framework for the interval. Between these two blocks, a distance of approximately 200 km, there are marked changes in the style of deposition from sand-dominated, proximal fluvial systems in the SW (Block 405a, MLN, MLC, KMD and MLNW fields) to a more distal, more clay-prone system in the NE (Block 402, ROD/BRSE/BSFN, SFNE and BSF fields). A chemostratigraphic study of the TAG-I in these two blocks has allowed a four-fold correlation framework to be defined, where each chemostratigraphic package has distinctive geochemical features. Chemostratigraphic Package 10, the oldest unit, lies above the Hercynian Unconformity, but beneath a geochemically identifiable hiatal surface. Chemostratigraphic Package 20 lies above the hiatal surface but is separated from the overlying packages by a mineralogical change identifiable in both claystone and sandstone geochemistry. Chemostratigraphic Packages 30 and 40 are chemically somewhat similar, but are separated by a regional event interpreted as a period of dolocrete and lacustrine development. By combining the geochemical differentiation of the units and recognition of their stratal boundaries, it is possible to define a correlation for the TAG-I between Blocks 402 and 405a. The proposed correlation between the two blocks suggests that the northern parts of Block 405a may have been occupied by a spur or subsidiary channel from the main SW–NE-trending fluvial system, resulting in one of the chemically defined packages being demonstrably absent in the MLNW, MLN, KMD and MLC fields when compared with the other areas of the study.
Resumo:
From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites), shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle East, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode.
Resumo:
Cores from Leg 122, Sites 759, 760, 761, and 764, were sampled at intervals of one sample per 1.5-m section in the Upper Triassic sequences. Spores, pollen, acritarchs, freshwater algae, and dinoflagellate cysts were studied to establish a palynostratigraphic framework for the Late Triassic. The palynological sequence is interpreted in terms of Australian spore-pollen zones: the Carman Samaropollenites speciosus Zone, the Norian Minutosaccus crenulatus Zone, and the Rhaetian Ashmoripollis reducta Zone. The Samaropollenites speciosus Zone-Minutosaccus crenulatus Zone boundary is marked by the change of pollen abundance and has a gradual character. Therefore, a transitional uppermost Carnian to Norian Samaropollenites speciosus/Minutosaccus crenulatus Zone is used. Age-determining dinoflagellate cysts are present in the Norian and Rhaetian sediments.
Resumo:
The Triassic fish faunas of the Southern Hemisphere are only known from a few sedimentary basins and the most productive sites are those from the Karoo Supergroup, in South Africa and the Sydney Basin of Australia. A single lungfish tooth plate ascribed to Ptychoceratodus cf. philippsi was recovered from Late Triassic (Carnian) red beds of southern Brazil and is described herein. This find extends to South America the palaeogeographic distribution of the genus, which occurs in the Early Triassic of Australia and South Africa and the Middle/Late Triassic of Europe and Late Triassic of Madagascar and India. The presence of this dipnoan solely in the uppermost part of the Santa Maria Formation suggests that the migration of Ptychoceratodus towards the Paraná Basin began not before the late Induan/early Olenekian (late Early Triassic). At that time, more humid (monsoonal) conditions prevailed in what is now southern Brazil, compared to semi-arid/desert conditions that dominated the Late Permian and possibly the earliest Early Triassic (the latter presumably not represented in the Paraná Basin). © The Geological Society of London 2008.
Resumo:
We describe an additional saurischian specimen from the Caturrita Formation (Norian) of the Parana Basin, southern Brazil. This material was collected in the 1950s and remained unstudied due to its fragmentary condition. Detailed comparisons with other saurischians worldwide reveal that some characters of the ilium, including the low ventral projection of the medial wall of the acetabulum and its concave ventral margin, together with the short triangular shape of the pre-acetabular process and its mound-like dorsocaudal edge, resemble those of sauropodomorphs such as Plateosaurus and Riojasaurus. This set of traits suggests that MN 1326-V has affinities with basal Sauropodomorpha, probably closer to plateosaurians than to Saturnalia-like taxa. Previous records of this clade in the Caturrita Formation include Unaysaurus, which has been related to Plateosaurus within Plateosauridae. Alternative schemes suggest that plateosaurids include Plateosaurus plus the Argentinean 'prosauropods' Coloradisaurus and Riojasaurus. Both hypotheses raise biogeographic questions, as a close relationship between faunas from South America and Europe excluding Africa and North America is not supported by geological and biostratigraphical evidence. Additionally, the absence of plateosaurids in other continents suggests that the geographical distribution of this taxon is inconsistent with the geological history of western Pangaea, and this demands further investigations of the phylogeny of sauropodomorphs or improved sampling.
Resumo:
In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure–temperature (P–T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750–820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40–45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U–Th–Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas–Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.
Resumo:
Triassic turbidites of the Nanpanjiang basin of south China represent the most expansive and voluminous siliciclastic turbidite accumulation in south China. The Nanpanjiang basin occurs at a critical junction between the southern margin of the south China plate and the Indochina, Siamo and Sibumasu plates to the south and southwest. The Triassic Yangtze carbonate shelf and isolated carbonated platforms in the basin have been extensively studied, but silicilastic turbidites in the basin have received relatively little attention. Deciphering the facies, paleocurrent indicators and provenance of the Triassic turbidites is important for several reasons: it promises to help resolve the timing of plate collisions along suture zones bordering the basin to the south and southwest, it will enable evaluation of which suture zones and Precambrian massifs were source areas, and it will allow an evaluation of the impact of the siliciclastic flux on carbonate platform evolution within the basin. Turbidites in the basin include the Early Triassic Shipao Formation and the Middle-Late Triassic Baifeng, Xinyuan, Lanmu Bianyang and Laishike formations. Each ranges upward of 700 m and the thickest is nearly 3 km. The turbidites contain very-fine sand in the northern part of the basin whereas the central and southern parts of the basin also commonly contain fine and rarely medium sand size. Coarser sand sizes occur where paleocurrents are from the south, and in this area some turbidites exhibit complete bouma sequences with graded A divisions. Successions contain numerous alternations between mud-rich and sand-rich intervals with thickness trends corresponding to proximal/ distal fan components. Spectacularly preserved sedimentary structures enable robust evaluation of turbidite systems and paleocurrent analyses. Analysis of paleocurrent measurements indicates two major directions of sediment fill. The northern part of the basin was sourced primarily by the Jiangnan massif in the northeast, and the central and southern parts of the basin were sourced primarily from suture zones and the Yunkai massif to the south and southeast respectively. Sandstones of the Lower Triassic Shipao Fm. have volcaniclastic composition including embayed quartz and glass shards. Middle Triassic sandstones are moderately mature, matrix-rich, lithic wackes. The average QFL ratio from all point count samples is 54.1/18.1/27.8% and the QmFLt ratio is 37.8/ 18.1/ 44.1%. Lithic fragments are dominantly claystone and siltstone clasts and metasedimentary clasts such as quartz mica tectonite. Volcanic lithics are rare. Most samples fall in the recycled orogen field of QmFLt plots, indicating a relatively quartz and lithic rich composition consistent with derivation from Precambrian massifs such as the Jiangnan, and Yunkai. A few samples from the southwest part of the basin fall into the dissected arc field, indicating a somewhat more lithic and feldspar-rich composition consistent with derivation from a suture zone Analysis of detrial zircon populations from 17 samples collected across the basin indicate: (1) Several samples contain zircons with concordant ages greater than 3000 Ma, (2) there are widespread peaks across the basin at 1800 Ma and 2500, (3) a widespread 900 Ma population, (3) a widespread population of zircons at 440 Ma, and (5) a larger population of younger zircons about 250 Ma in the southwestern part which is replaced to the north and northwest by a somewhat older population around 260-290 Ma. The 900 Ma provenance fits derivation from the Jiangnan Massif, the 2500, 1800, and 440 Ma provenance fits the Yunkai massif, and the 250 Ma is consistent with convergence and arc development in suture zones bordering the basin on the south or southwest. Early siliciclastic turbidite flux, proximal to source areas impacted carbonate platform evolution by infilling the basin, reducing accommodation space, stabilizing carbonate platform margins and promoting margin progradation. Late arrival, in areas far from source areas caused margin aggradation over a starved basin, development of high relief aggradational escarpments and unstable scalloped margins.
Resumo:
Several vertebrae of a sauropterygian specimen have been recovered in Fuencaliente de Medinaceli (Soria Province, Castilla y León, Spain). The remains come from Middle–Upper Triassic Muschelkalk Facies. This finding represents the first documented evidence of a Triassic tetrapod in Castilla y León. The vertebrae belong to Nothosaurus, a sauropterygian genus found in Europe, Middle East, North of Africa and China. This genus is poorly-known in the Iberian record. The new remains constitute the first evidence of the species Nothosaurus giganteus, or a related taxon, in the Iberian Peninsula. This study reveals the occurrence of at least two species of the sauropterygian Nothosaurus in the Spanish record.
Resumo:
Chemical Stratigraphy, or the study of the variation of chemical elements within sedimentary sequences, has gradually become an experienced tool in the research and correlation of global geologic events. In this paper 87Sr/ 86Sr ratios of the Triassic marine carbonates (Muschelkalk facies) of southeast Iberian Ranges, Iberian Peninsula, are presented and the representative Sr-isotopic curve constructed for the upper Ladinian interval. The studied stratigraphic succession is 102 meters thick, continuous, and well preserved. Previous paleontological data from macro and micro, ammonites, bivalves, foraminifera, conodonts and palynological assemblages, suggest a Fassanian-Longobardian age (Late Ladinian). Although diagenetic minerals are present in small amounts, the elemental data content of bulk carbonate samples, especially Sr contents, show a major variation that probably reflects palaeoenvironmental changes. The 87Sr/86Sr ratios curve shows a rise from 0.707649 near the base of the section to 0.707741 and then declines rapidly to 0.707624, with a final values rise up to 0.70787 in the upper part. The data up to meter 80 in the studied succession is broadly concurrent with 87Sr/86Sr ratios of sequences of similar age and complements these data. Moreover, the sequence stratigraphic framework and its key surfaces, which are difficult to be recognised just based in the facies analysis, are characterised by combining variations of the Ca, Mg, Mn, Sr and CaCO3 contents
Resumo:
Laser ablation ICP-MS U–Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian–Lower Carboniferous of the South Portuguese Zone (Phyllite–Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.