976 resultados para Late Sodium Current


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Sudden infant death syndrome (SIDS) is a leading cause of death during the first 6 months after birth. About 5% to 10% of SIDS may stem from cardiac channelopathies such as long-QT syndrome. We recently implicated mutations in alpha1-syntrophin (SNTA1) as a novel cause of long-QT syndrome, whereby mutant SNTA1 released inhibition of associated neuronal nitric oxide synthase by the plasma membrane Ca-ATPase PMCA4b, causing increased peak and late sodium current (I(Na)) via S-nitrosylation of the cardiac sodium channel. This study determined the prevalence and functional properties of SIDS-associated SNTA1 mutations. METHODS AND RESULTS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing of SNTA1's open reading frame, 6 rare (absent in 800 reference alleles) missense mutations (G54R, P56S, T262P, S287R, T372M, and G460S) were identified in 8 (approximately 3%) of 292 SIDS cases. These mutations were engineered using polymerase chain reaction-based overlap extension and were coexpressed heterologously with SCN5A, neuronal nitric oxide synthase, and PMCA4b in HEK293 cells. I(Na) was recorded using the whole-cell method. A significant 1.4- to 1.5-fold increase in peak I(Na) and 2.3- to 2.7-fold increase in late I(Na) compared with controls was evident for S287R-, T372M-, and G460S-SNTA1 and was reversed by a neuronal nitric oxide synthase inhibitor. These 3 mutations also caused a significant depolarizing shift in channel inactivation, thereby increasing the overlap of the activation and inactivation curves to increase window current. CONCLUSIONS Abnormal biophysical phenotypes implicate mutations in SNTA1 as a novel pathogenic mechanism for the subset of channelopathic SIDS. Functional studies are essential to distinguish pathogenic perturbations in channel interacting proteins such as alpha1-syntrophin from similarly rare but innocuous ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiac late Na (+) current is generated by a small fraction of voltage-dependent Na (+) channels that undergo a conformational change to a burst-gating mode, with repeated openings and closures during the action potential (AP) plateau. Its magnitude can be augmented by inactivation-defective mutations, myocardial ischemia, or prolonged exposure to chemical compounds leading to drug-induced (di)-long QT syndrome, and results in an increased susceptibility to cardiac arrhythmias. Using CytoPatch™ 2 automated patch-clamp equipment, we performed whole-cell recordings in HEK293 cells stably expressing human Nav1.5, and measured the late Na (+) component as average current over the last 100 ms of 300 ms depolarizing pulses to -10 mV from a holding potential of -100 mV, with a repetition frequency of 0.33 Hz. Averaged values in different steady-state experimental conditions were further corrected by the subtraction of current average during the application of tetrodotoxin (TTX) 30 μM. We show that ranolazine at 10 and 30 μM in 3 min applications reduced the late Na (+) current to 75.0 ± 2.7% (mean ± SEM, n = 17) and 58.4 ± 3.5% ( n = 18) of initial levels, respectively, while a 5 min application of veratridine 1 μM resulted in a reversible current increase to 269.1 ± 16.1% ( n = 28) of initial values. Using fluctuation analysis, we observed that ranolazine 30 μM decreased mean open probability p from 0.6 to 0.38 without modifying the number of active channels n, while veratridine 1 μM increased n 2.5-fold without changing p. In human iPSC-derived cardiomyocytes, veratridine 1 μM reversibly increased APD90 2.12 ± 0.41-fold (mean ± SEM, n = 6). This effect is attributable to inactivation removal in Nav1.5 channels, since significant inhibitory effects on hERG current were detected at higher concentrations in hERG-expressing HEK293 cells, with a 28.9 ± 6.0% inhibition (mean ± SD, n = 10) with 50 μM veratridine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. However, the difficulty in defining myocardial aging and the mechanisms involved complicates the recognition of the cellular processes underlying impaired diastolic relaxation. We raised the possibility that, in a mouse model of physiological aging, defects in the electromechanical properties of cardiomyocytes are important determinants of the diastolic properties of the myocardium, independently from changes in the structural composition of the muscle and collagen framework. Here we show that an increase in the late Na+ current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences the temporal kinetics of Ca2+ cycling and cell shortening. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects the dynamics of Ca2+ transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the etiology of the defective cardiac performance in the elderly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fenvalerate is a widely used pyrethroid insecticide. The report presents our findings on the effect of fenvalerate on isolated whole-cell sodium currents in single rat dorsal root ganglionic neurons in culture, studied with patch-clamp technique. Fenvalerate decreased the amplitude of whole-cell sodium current and slowed the inactivation and tail current kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-PGlu-(2-proPyl)-L-His-L-ProNH(2) (NP-647) is a CNS active thyrotropin-releasing hormone (TRH) analog with potential application in various CNS disorders including seizures. In the present study, mechanism of action for protective effect of NP-647 was explored by studying role of NP-647 on epileptiform activity and sodium channels by using patch-clamp methods. Epileptiform activity was induced in subicular pyramidal neurons of hippocampal slice of rat by perfusing 4-aminopyridine (4-AP) containing Mg(+2)-free normal artificial cerebrospinal fluid (nACSF). Increase in mean firing frequency was observed after perfusion of 4-AP and zero Mg(+2) (2.10+/-0.47 Hz) as compared with nACSF (0.12+/-0.08 Hz). A significant decrease in mean firing frequency (0.61+/-0.22 Hz), mean frequency of epileptiform events (0.03+/-0.02 Hz vs. 0.22+/-0.05 Hz of 4-AP+0 Mg), and average number of action potentials in paroxysmal depolarization shift-burst (2.54+/-1.21 Hz vs. 8.16+/-0.88 Hz of 4-AP +0 Mg) was observed. A significant reduction in peak dV/dt (246+/-19 mV ms(-1) vs. 297 18 mV ms-1 of 4-AP+0 Mg) and increase (1.332+/-0.018 ms vs. 1.292+/-0.019 ms of 4-AP+0 Mg) in time required to reach maximum depolarization were observed indicating role of sodium channels. Concentration-dependent depression of sodium current was observed after exposure to dorsal root ganglion neurons to NP-647. NP-647 at different concentrations (1, 3, and 10 mu M) depressed sodium current (15+/-0.5%, 50+/-2.6%, and 75+/-0.7%, respectively). However, NP-647 did not show change in the peak sodium current in CNa18 cells. Results of present study demonstrated potential of NP-647 in the inhibition of epileptiform activity by inhibiting sodium channels indirectly. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Fast inward currents were elicited in freshly isolated sheep lymphatic smooth muscle cells by depolarization from a holding potential of -80 mV using the whole-cell patch-clamp technique. The currents activated at voltages positive to -40 mV and peaked at 0 mV. 2. When sodium chloride in the bathing solution was replaced isosmotically with choline chloride inward currents were abolished at all potentials. 3. These currents were very sensitive to tetrodotoxin (TTX). Peak current was almost abolished at 1 microM with half-maximal inhibition at 17 nM. 4. Examination of the voltage dependence of steady state inactivation showed that more than 90% of the current was available at the normal resting potential of these cells (-60 mV). 5. The time course of recovery from inactivation was studied using a double-pulse protocol and showed that recovery was complete within 100 ms with a time constant of recovery of 20 ms. 6. Under current clamp, action potentials were elicited by depolarizing current pulses. These had a rapid upstroke and a short duration and could be blocked with 1 microM TTX. 7. Spontaneous contractions of isolated rings of sheep mesenteric lymphatic vessels were abolished or significantly depressed by 1 microM TTX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly–inactivating Na+ current (INa,T) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch–clamp. In addition, channel activity of persistent, non-inactivating Na+ current (INa,P) was obviously increased in the hippocampal neuronal culture model as judged by single–channel patch–clamp recording. Furthermore, VGSC subtypes NaV1.1, NaV1.2 and NaV1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.