994 resultados para Laser-capture microdissection
Resumo:
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Resumo:
INTRODUÇÃO: Microdissecção e captura a laser (MCL) é uma técnica de desenvolvimento recente que permite a coleta de células individuais ou pequeno conjunto de células para análise molecular. Atualmente, no Brasil, há raros microscópios para MCL, de modo que a divulgação dos procedimentos inerentes a essa técnica é oportuna para destacar seu amplo potencial para diagnóstico e investigação. OBJETIVO: Este trabalho descreve a padronização dos procedimentos de MCL e de extração de DNA de material fixado em formalina e incluído em parafina. MATERIAL E MÉTODOS: Foram estudados o éxon 8 do gene TP53 e o gene da ciclofilina em amostras de tecido normal e de neoplasias de fígado e rim provenientes de modelo de carcinogênese química induzida em rato. A extração do DNA foi comprovada por reação em cadeia da polimerase (nested-PCR). RESULTADOS: Foram padronizados os procedimentos de preparo dos cortes histológicos, de microdissecção e captura a laser e de obtenção de seqüências gênicas pela reação de nested-PCR para tecidos incluídos em parafina. Obtivemos amplificação de 48,3% das amostras para o éxon 8 do gene TP53 e 51,7% para o gene da ciclofilina. Considerando pelo menos um dos dois segmentos gênicos, foram amplificadas 79,3% das amostras. DISCUSSÃO E CONCLUSÃO: A extração de DNA de tecidos fixados em formalina e incluídos em parafina e a técnica de nested-PCR foram adequadamente padronizadas para produtos gênicos de interesse, obtidos de material coletado por MCL. Esses procedimentos podem ser úteis para a obtenção de seqüências de DNA de arquivos para análise molecular.
Resumo:
Prostrate Cancer(PCa)is the most common cause of cancer death amongst Western males. PCa occurs in two distinct stages. In its early stage, growth and development is dependent primarily on male sex hormones (androgens) such as testosterone, although other growth factors have roles maintaining PCa cell survival in this stage. In the later stage of PCa development, growth and.maintenance is independent of androgen stimulation and growth factors including Insulin-like Growth Factor -1 (IGf.:·l) and Epidermal Growth Factor (EGF) are thought to have more crucial roles in cell survival and PCa progression. PCa, in its late stages, is highly aggressive and metastatic, that is, tumorigenic cells migrate from the primary site of the body (prostate) and travel via the systemic and lymphatic circulation, residing and colonising in the bone, lymph node, lung, and in more rare cases, the brain. Metastasis involves both cell migration and tissue degradation activities. The degradation of the extracellular matrix (ECM), the tissue surrounding the organ, is mediated in part by members of a family of 26 proteins called the Matrix Metalloproteases (MMPs), whilst ceil adhesion molecules, of which proteins known as Integrins are included, mediate ce11 migration. A family of proteins known as the ADAMs (A Disintegrin . And Metalloprotease domain) were a recently characterised family at the commencement of this study and now comprise 34 members. Because of their dual nature, possessing an active metaiioprotease domain, homologous to that of the MMPs, and an integrin-binding domain capable of regulating cell-cell and cell-ECM contacts, it was thought likely that members of the ADAMs family may have implications for the progression of aggressive cancers such as those ofthe prostate. This study focussed on two particular ADAMs -9 and -10. ADAM-9 has an active metalloprotease domain, which has been shown to degrade constituents of the ECM, including fibronectin, in vitro. It also has an integrin-binding capacity through association with key integrins involved in PCa progression, such as a6~1. ADAM-10 has no such integrin binding activities, but its bovine orthologue, MADM, is able to degrade coHagen type IV, a major component of basement membranes. It is likely human ADAM-10 has the same activity. It is also known to cleave Ll -a protein involved in cell anchorage activities - and collagen type XVII - which is a principal component of the hemidesmosomes of cellular tight junctions. The cleavage of these proteins enables the cell to be released from the surrounding environment and commence migratory activities, as required in metastasis. Previous studies in this laboratory showed the mRNA expression of the five ADAMs -9,- 10, -11, -15 and -17 in PCa cell lines, characteristic of androgen-dependent and androgen independent disease. These studies were furthered by the characterisation of AD AM-9, -10 and -17 mRNA regulation by Dihydrotestosterone (DHT) in the androgen-responsive cell line (LNCaP). ADAM-9 and -10 mRNA levels were elevated in response to DHT stimulation. Further to these observations, the expression of ADAM-9 and -10 was shown in primary prostate biopsies from patients with PCa. ADAM-1 0 was expressed in the cytoplasm and on the ceH membrane in epithelial and basal cells ofbenign prostate glands, but in high-grade PCa glands, ADAM-I 0 expression was localised to the nucleus and its expression levels appeared to be elevated when compared to low-grade PCa glands. These studies provided a strong background for the hypothesis that ADAM-9 and -10 have key roles in the development ofPCa and provided a basis for further studies.The aims of this study were to: 1) characterise the expression, localisation and levels, of ADAM-9 and -10 mRNA and protein in cell models representing characteristics of normal through androgen-dependent to androgen-independent PCa, as well as to expand the primary PCa biopsy data for ADAM-9 and ADAM-10 to encompass PCa bone metastases 2) establish an in vitro cell system, which could express elevated levels of ADAM-1 0 so that functional cell-based assays such as cell migration, invasion and attachment could be carried out, and 3) to extend the previous hormonal regulation data, to fully characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in the hormonal/growth factor responsive cell line LNCaP. For aim 1 (expression of ADAM-9 and -10 mRNA and protein), ADAM-9 and -10 mRNA were characterised by R T -PCR, while their protein products were analysed by Western blot. Both ADAM-9 and -10 mRNA and protein were expressed at readily detectable levels across progressively metastatic PCa cell lines model that represent characteristics of low-grade,. androgen-dependent (LNCaP and C4) to high-grade, androgen-independent (C4-2 and C4-2B) PCa. When the non-tumorigenic prostate cell line RWPE-1 was compared with the metastatic PCa cell line PC-3, differential expression patterns were seen by Western blot analysis. For ADAM-9, the active form was expressed at higher levels in RWPE-1, whilst subcellular fractionation showed that the active form of ADAM-9 was predominantly located in the cell nucleus. For ADAM-I 0, in both of the cell Jines, a nuclear specific isoform of the mature, catalytically active ADAM-I 0 was found. This isoforrn differed by -2 kDa in Mr (smaller) than the cytoplasmic specific isoform. Unprocessed ADAM-I 0 was readily detected in R WPE-1 cell lines but only occasionally detected in PC-3 cell lines. Immunocytochemistry using ADAM-9 and -10 specific antibodies confirmed nuclear, cytoplasmic and membrane expression of both ADAMs in these two cell lines. To examine the possibility of ADAM-9 and -10 being shed into the extracellular environment, membrane vesicles that are constitutively shed from the cell surface and contain membrane-associated proteins were collected from the media of the prostate cell lines RWPE-1, LNCaP and PC-3. ADAM-9 was readily detectable in RWPE- 1 and LNCaP cell membrane vesicles by Western blot analysis, but not in PC-3 cells, whilst the expression of ADAM-I 0 was detected in shed vesicles from each of these prostate cell lines. By Laser Capture Microdissection (LCM), secretory epithelial cells of primary prostate gland biopsies were isolated from benign and malignant glands. These secretory cells, by Western blot analysis, expressed similar Mr bands for ADAM-9 and -10 that were found in PCa cell lines in vitro, indicating that the nuclear specific isoforrn of ADAM-I 0 was present in PCa primary tumours and may represent the predominantly nuclear form of ADAM-I 0 expression, previously shown in high-grade PCa by immunohistochemistry (IHC). ADAM-9 and -10 were also examined by IHC in bone metastases taken from PCa patients at biopsy. Both ADAMs could be detected at levels similar to those shown for Prostate Specific Antigen (PSA) in these biopsies. Furthermore, both ADAM-9 and -10 were predominantly membrane- bound with occasional nuclear expression. For aim 2, to establish a cell system that over-expressed levels of ADAM-10, two fulllength ADAM-I 0 mammalian expression vectors were constructed; ADAM-I 0 was cloned into pcDNA3.1, which contains a CMV promoter, and into pMEP4, containing an inducible metallothionine promoter, whose activity is stimulated by the addition of CdC}z. The efficiency of these two constructs was tested by way of transient transfection in the PCa cell line PC-3, whilst the pcDNA3.1 construct was also tested in the RWPE-1 prostate cell line. Resultant Western blot analysis for all transient transfection assays showed that levels of ADAM-I 0 were not significantly elevated in any case, when compared to levels of the housekeeping gene ~-Tubulin, despite testing various levels of vector DNA, and, for pMEP4, the induction of the transfected cell system with different degrees of stimulation with CdCh to activate the metallothionine promoter post-transfection. Another study in this laboratory found similar results when the same full length ADAM-10 sequence was cloned into a Green Fluorescent Protein (GFP) expressing vector, as no fluorescence was observed by means of transient tran sfection in the same, and other, PCa cell lines. It was hypothesised that the Kozak sequence included in the full-length construct (human ADAMI 0 naturally occurring sequence) is not strong enough to initiate translation in an artificial system, in cells, which, as described in Aim 1, are already expressing readily detectable levels of endogenous ADAM-10. As a result, time constraints prevented any further progress with Aim 2 and functional studies including cell attachment, invasion and migration were unable to be explored. For Aim 3, to characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in LNCaP cells, the levels of ADAM-9 and -10 mRNA were not stimulated by DHT or IGF-I alone, despite our previous observations that initially characterised ADAM-9 and -10 mRNA as being responsive to DHT. However, IGF-1 in synergy with DHT did significantly elevate mRNA levels ofboth ADAMs. In the case of ADAM-9 and -10 protein, the same trends of stimulation as found at the rnRNA level were shown by Western blot analysis when ADAM-9 and -10 signal intensity was normalised with the housekeeping protein ~-Tubulin. For EGF treatment, both ADAM-9 and -10 mRNA and protein levels were significantly elevated, and further investigation vm found this to be the case for each of these ADAMs proteins in the nuclear fractions of LNCaP cells. These studies are the first to describe extensively, the expression and hormonal/growth factor regulation of two members of the ADAMs family ( -9 and -1 0) in PCa. These observations imply that the expression of ADAM-9 and -10 have varied roles in PCa whilst it develops from androgen-sensitive (early stage disease), through to an androgeninsensitive (late-stage), metastatic disease. Further studies are now required to investigate the several key areas of focus that this research has revealed, including: • Investigation of the cellular mechanisms that are involved in actively transporting the ADAMs to the cell's nuclear compartment and the ADAMs functional roles in the cell nucleus. • The construction of a full-length human ADAM-10 mammalian expression construct with the introduction of a new Kozak sequence, that elevates ADAM-I 0 expression in an in vitro cell system are required, so that functional assays such as cell invasion, migration and attachment may be carried out to fmd the functional consequences of ADAM expression on cellular behaviour. • The regulation studies also need to be extended by confirming the preliminary observations that the nuclear levels of ADAMs may also be elevated by hormones and growth factors such as DHT, IGF-1 and EGF, as well as the regulation of levels of plasma membrany vesicle associated ADAM expression. Given the data presented in this study, it is likely the ADAMs have differential roles throughout the development of PCa due to their differential cellular localisation and synergistic growth-factor regulation. These observations, along with those further studies outlined above, are necessary in identifying these specific components ofPCa metastasis to which the ADAMs may contribute.
Resumo:
Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.
Resumo:
Mortality in breast cancer is linked to metastasis and recurrence yet there is no acceptable biological model for cancer relapse. We hypothesise that there might exist primary tumour cells capable of escaping surgery by migration and resisting radiotherapy and chemotherapy to cause cancer recurrence. We investigated this possibility in invasive ductal carcinoma (IDC) tissue and observed the presence of solitary primary tumour cells (SPCs) in the dense collagen stroma that encapsulates intratumoural cells (ICs). In IDC tissue sections, collagen was detected with either Masson's Trichrome or by second harmonics imaging. Cytokeratin-19 (CK-19) and vimentin (VIM) antibodies were, respectively, used to identify epithelial-derived tumour cells and to indicate epithelial to mesenchymal transition (EMT). Confocal/multiphoton microscopy showed that ICs from acini were mainly CK-19 +ve and were encapsulated by dense stromal collagen. Within the stroma, SPCs were detected by their staining for both CK-19 and VIM (confirming EMT). ICs and SPCs were subsequently isolated by laser capture microdissection followed by multiplex tandem-PCR studies. SPCs were found to be enriched for pro-migratory and anti-proliferative genes relative to ICs. In vitro experiments using collagen matrices at 20 mg/cm 3, similar in density to tumour matrices, demonstrated that SPC-like cells were highly migratory but dormant, phenotypes that recapitulated the genotypes of SPCs in clinical tissue. These data suggest that SPCs located at the breast cancer perimeter are invasive and dormant such that they may exceed surgical margins and resist local and adjuvant therapies. This study has important connotations for a role of SPCs in local recurrence.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18 400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared with vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of six potential markers, five of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, although it was barely expressed at all in normal endometrium. LCM, combined with microarray analysis, constitutes a powerful tool for mapping the transcriptome of vascular cells. After immunohistochemical validation, markers of vascular endothelial and perivascular cells from endometriotic nodules could be identified, which may provide targets to improve early diagnosis or to selectively deliver therapeutic agents.
Resumo:
AIMS: Improved prostate cancer (PCa)-specific biomarkers are urgently required to distinguish between indolent and aggressive disease, in order to avoid overtreatment. In this study, we investigated the prostatic tissue expression of secreted frizzled-related protein (SFRP)-2.
METHODS AND RESULTS: Following immunohistochemical analysis on PCa tissue microarrays with samples from 216 patients, strong/moderate SFRP-2 expression was observed in epithelial cells of benign prostatic hyperplasia, and negative/weak SFRP-2 expression was observed in the majority of tumour epithelia. However, among Gleason grade 5 carcinomas, 40% showed strong/moderate SFRP-2 expression and 60% showed negative SFRP-2 expression in epithelial cells. Further microscopic evaluation of Gleason grade 5 tumours revealed different morphological patterns, corresponding with differential SFRP-2 expression. The first subgroup (referred to as Type A) appeared to have a morphologically solid growth pattern, whereas the second subgroup (referred to as Type B) appeared to have a more diffuse pattern. Furthermore, 100% (4/4) of Type A patients experienced biochemical recurrence, as compared with 0% (0/6) of Type B patients.
CONCLUSIONS: These results imply: (i) that there is a loss of SFRP-2 expression from benign to malignant prostate glands; and (ii) differential SFRP-2 expression among two possible subgroups of Gleason grade 5 tumours.
Resumo:
BACKGROUND: Prostate cancer (PCa) is a clinically and pathologically heterogeneous disease. The rapid development of sequencing technology has the potential to deliver new biomarkers with emphasis on aggressive disease and to revolutionise personalised cancer treatment. However, a prostate harbouring cancer commonly contains multiple separate tumour foci, with the potential to aggravate tumour sampling. The level of intraprostatic tumour heterogeneity remains to be determined.
OBJECTIVE: To determine the level of intraprostatic tumour heterogeneity through genome-wide, high-resolution profiling of multiple tumour samples from the same individual.
DESIGN, SETTINGS, AND PARTICIPANTS: Multiple tumour samples were obtained from four individuals following radical prostatectomy. One individual (SWE-1) contained >70% cancer cells in all tumour samples, whereas the other three (SWE-2 to SWE-4) required the use of laser capture microdissection for tumour cell enrichment. Subsequently, DNA was extracted from all tissue samples, and exome sequencing was performed. All tumour foci of SWE-1 were also profiled using a high-resolution array for the identification of copy number alterations (CNA).
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Shared somatic high-frequency single nucleotide variants (SNV) and CNAs were used to infer the level of intraprostatic tumour heterogeneity.
RESULTS AND LIMITATIONS: No high-frequency mutations, common for the three tumour samples of SWE-1, were identified. Ten randomly chosen positions were validated with Sanger sequencing in all foci, which verified the exome data. The high level of intraprostatic heterogeneity was consistent in all individuals. In total, three out of four individuals harboured tumours without an apparent common somatic denominator. Although we cannot exclude the presence of common structural rearrangements, a high-density array was used for the detection of deletions and amplifications in SWE-1, which agreed with the exome data.
CONCLUSIONS: We present evidence for the presence of somatically independent tumours within the same prostate. This finding will have implications for personalised cancer treatment and biomarker discovery.
Resumo:
The matrix metalloproteinases (MMPs) are endopeptidases which break down the extracellular matrix and regulate cytokine and growth factor activity. Several MMPs have been implicated in the promotion of invasion and metastasis in a broad range of tumours including urothelial carcinoma. In this study, RNA from 132 normal bladder and urothelial carcinoma specimens was profiled for each of the 24 human MMPs, the four endogenous tissue inhibitors of MMPs (TIMPs) and several key growth factors and their receptors using quantitative real time RT-PCR. Laser capture microdissection (LCM) of RNA from 22 tumour and 11 normal frozen sections was performed allowing accurate RNA extraction from either stromal or epithelial compartments. This study confirms the over expression in bladder tumour tissue of well-documented MMPs and highlights a range of MMPs which have not previously been implicated in the development of urothelial cancer. In summary, MMP-2, MT1-MMP and the previously unreported MMP-28 were very highly expressed in tumour samples while MMPs 1, 7, 9, 11, 15, 19 and 23 were highly expressed. There was a significant positive correlation between transcript expression and tumour grade for MMPs 1, 2, 8, 10, 11, 12, 13, 14, 15 and 28 (P < 0.001). At the same confidence interval, TIMP-1 and TIMP-3 also correlated with increasing tumour grade. LCM revealed that most highly expressed MMPs are located primarily within the stromal compartment except MMP-13 which localised to the epithelial compartment. This work forms the basis for further functional studies, which will help to confirm the MMPs as potential diagnostic and therapeutic targets in early bladder cancer.
Resumo:
RESUMO: Actualmente, a única possibilidade de cura para doentes com adenocarcinoma do pâncreas (PDAC) é a ressecção cirúrgica, no início deste estudo, perguntamo-nos se os predictores clínico-patológicos clássicos de prognostico poderiam ser validados em uma grande cohort de doentes com cancro do pâncreas ressecável e se outros predictores clínicos poderiam ter um papel na decisão de que doentes beneficiariam de ressecção cirúrgica. No capítulo 2, observamos que até 30% dos doentes morrem no primeiro ano após a ressecção cirúrgica, pelo que o nosso objectivo foi determinar factores pré-operatórios que se correlacionam com mortalidade precoce após ressecação cirúrgica com recurso a um instrumento estatisticamente validado, o Charlson-Age Comorbidity Index (CACI), determinamos que um CACI score superior a 4 foi preditivo de internamentos prolongados (p <0,001), complicações pós-operatórias (p = 0,042), e mortalidade em 1 ano pós- ressecção cirúrgica (p <0,001). Um CACI superior a 6 triplicou a mortalidade no primeiro ano pós-cirurgia e estes doentes têm menos de 50% de probabilidade de estarem vivos um ano após a cirurgia. No capítulo 3, o nosso objectivo foi identificar uma proteína de superfície que se correlacionasse estatisticamente com o prognostico de doentes com adenocarcinoma do pâncreas e permitisse a distinção de subgrupos de doentes de acordo com as suas diferenças moleculares, perguntamo-nos ainda se essa proteína poderia ser um marcador de células-estaminais. No nosso trabalho anterior observamos que as células tumorais na circulação sanguínea apresentavam genes com características bifenotípica epitelial e mesenquimal, enriquecimento para genes de células estaminais (ALDH1A1 / ALDH1A2 e KLF4), e uma super-expressão de genes da matriz extracelular (colagénios, SPARC, e DCN) normalmente identificados no estroma de PDAC. Após a avaliação dos tumores primários com RNA-ISH, muitos dos genes identificados, foram encontrados co-localizando em uma sub-população de células na região basal dos ductos pancreáticos malignos. Além disso, observamos que estas células expressam o marcador SV2A neuroendócrino, e o marcador de células estaminais ALDH1A1/2. Em comparação com tumores negativos para SV2, os doentes com tumores SV2 positivos apresentaram níveis mais baixos de CA 19-9 (69% vs. 52%, p = 0,012), tumores maiores (> 4 cm, 23% vs. 10%, p = 0,0430), menor invasão de gânglios linfáticos (69% vs. 86%, p = 0,005) e tumores mais diferenciados (69% vs. 57%, p = 0,047). A presença de SV2A foi associada com uma sobrevida livre de doença mais longa (HR: 0,49 p = 0,009) bem como melhor sobrevida global (HR: 0,54 p = 0,018). Em conjunto, esta informação aponta para dois subtipos diferentes de adenocarcinoma do pâncreas, e estes subtipos co-relacionam estatisticamente com o prognostico de doentes, sendo este subgrupo definido pela presença do clone celular SV2A / ALDH1A1/2 positivo com características neuroendócrinas. No Capítulo 4, a expressão de SV2A no cancro do pâncreas foi validado em linhas celulares primárias. Demonstramos a heterogeneidade do adenocarcinoma do pâncreas de acordo com características clonais neuroendócrinas. Ao comparar as linhas celulares expressando SV2 com linhas celulares negativas, verificamos que as linhas celulares SV2+ eram mais diferenciadas, diferindo de linhas celulares SV2 negativas no que respeita a mutação KRAS, proliferação e a resposta à quimioterapia. No capítulo 5, perguntamo-nos se o clone celular SV2 positivo poderia explicar a resistência a quimioterapia observada em doentes. Observamos um aumento absoluto de clones celulares expressando SV2A, em múltiplas linhas de evidência - doentes, linhas de células primárias e xenotransplantes. Embora, tenhamos sido capazes de demonstrar que o adenocarcinoma do pâncreas é uma doença heterogénea, consideramos que a caracterização genética destes clones celulares expressando SV2A é de elevada importância. Pretendemos colmatar esta limitação com as seguintes estratégias: Após o tratamento com quimioterapia neoadjuvante na nossa coorte, realizamos microdissecação a laser das amostras primarias em parafina, de forma a analisar mutações genéticas observadas no adenocarcinoma pancreático; em segundo lugar, pretendemos determinar consequências de knockdown da expressão de SV2A em nossas linhas celulares seguindo-se o tratamento com gemicitabina para determinação do papel funcional de SV2A; finalmente, uma vez que os nossos esforços anteriores com um promotor - repórter e SmartFlare ™ falharam, o próximo passo será realizar RNA-ISH PrimeFlow™ seguido de FACS e RNA-seq para caracterização deste clone celular. Em conjunto, conseguimos provar com várias linhas de evidência, que o adenocarcinoma pancreático é uma doença heterogénea, definido por um clone de células que expressam SV2A, com características neuroendócrinas. A presença deste clone no tecido de doentes correlaciona-se estatisticamente com o prognostico da doença, incluindo sobrevida livre de doença e sobrevida global. Juntamente com padrões de proliferação e co-expressão de ALDH1A1/2, este clone parece apresentar um comportamento de células estaminais e está associado a resistência a quimioterapia, uma vez que a sua expressão aumenta após agressão química, quer em doentes, quer em linhas de células primárias.----------------------------- ABSTRACT: Currently, the only chance of cure for patients with pancreatic adenocarcinoma is surgical resection, at the beginning of my thesis studies, we asked if the classical clinicopathologic predictors of outcome could be validated in a large cohort of patients with early stage pancreatic cancer and if other clinical predictors could have a role on deciding which patients would benefit from surgery. In chapter 2, we found that up to 30% of patients die within the first year after curative intent surgery for pancreatic adenocarcinoma. We aimed at determining pre-operative factors that would correlate with early mortality following resection for pancreatic cancer using a statistically validated tool, the Charlson-Age Comorbidity Index (CACI). We found that a CACI score greater than 4 was predictive of increased length of stay (p<0.001), post-operative complications (p=0.042), and mortality within 1-year of pancreatic resection (p<0.001). A CACI score of 6 or greater increased 3-fold the odds of death within the first year. Patients with a high CACI score have less than 50% likelihood of being alive 1 year after surgery. In chapter 3 we aimed at identifying a surface protein that correlates with patient’s outcome and distinguishes sub-groups of patients according to their molecular differences and if this protein could be a cancer stem cell marker. The most abundant class of circulating tumor cells identified in our previous work was found to have biphenotypic features of epithelial to mesenchymal transition, enrichment for stem-cell associated genes (ALDH1A1/ALDH1A2 and KLF4), and an overexpression of extracellular matrix genes (Collagens, SPARC, and DCN) normally found in the stromal microenvironment of PDAC primary tumors. Upon evaluation of matched primary tumors with RNA-ISH, many of the genes identified were found to co-localize in a sub-population of cells at the basal region of malignant pancreatic ducts. In addition, these cells expressed the neuroendocrine marker SV2A, and the stem cell marker ALDH1A1/2. Compared to SV2 negative tumors, patients with SV2 positive tumors were more likely to present with lower CA 19-9 (69% vs. 52%, p = 0.012), bigger tumors (size > 4 cm, 23% vs. 10%, p= 0.0430), less nodal involvement (69% vs. 86%, p = 0.005) and lower histologic grade (69% vs. 57%, p = 0.047). The presence of SV2A expressing cells was associated with an improved disease free survival (HR: 0.49 p=0.009) and overall survival (HR: 0.54 p=0.018) and correlated linearly with ALDH1A2. Together, this information points to two different sub-types of pancreatic adenocarcinoma, and these sub-types correlated with patients’ outcome and were defined by the presence of a SV2A/ ALDH1A1/2 expressing clone with neuroendocrine features. In Chapter 4, SV2A expression in cancer was validated in primary cell lines. We were able to demonstrate pancreatic adenocarcinoma heterogeneity according to neuroendocrine clonal features. When comparing SV2 expressing cell lines with SV2 negative cell lines, we found that SV2+ cell lines were more differentiated and differ from SV2 negative cell lines regarding KRAS mutation, proliferation and response to chemotherapy. In Chapter 5 we aimed at determining if this SV2 positive clone could explain chemoresistance observed in patients. We found an absolute increase in SV2A expressing cells, with multiple lines of evidence, in patients, primary cell lines and xenografts. Although, we have been able to show evidence that pancreatic adenocarcinoma is a heterogeneous disease, our findings warrant further investigation. To further characterize SV2A expressing clones after treatment with neoadjuvant chemotherapy in our cohort, we have performed laser capture microdissection of the paraffin embedded tissue in this study and will analyze the tissue for known genetic mutations in pancreatic adenocarcinoma; secondly, we want to know what will happen after knocking down SV2A expression in our cell lines followed by treatment with gemcitabine to determine if SV2A is functionally important; finally, since our previous efforts with a promoter – reporter and SmartFlare™ have failed, we will utilize a novel PrimeFlow™ RNA-ISH assay followed by FACS and RNA sequencing to further characterize this cellular clone. Overall our data proves, with multiple lines of evidence, that pancreatic adenocarcinoma is a heterogeneous disease, defined by a clone of SV2A expressing cells, with neuroendocrine features. The presence of this clone in patients’ tissue correlates with patient’s disease free survival and overall survival. Together with patterns of proliferation and ALDH1A1/2 co-expression, this clone seems to present a stem-cell-like behavior and is associated with chemoresistance, since it increases after chemotherapy, both in patients and primary cell lines.
Resumo:
RESUME : La douleur neuropathique est le résultat d'une lésion ou d'un dysfonctionnement du système nerveux. Les symptômes qui suivent la douleur neuropathique sont sévères et leur traitement inefficace. Une meilleure approche thérapeutique peut être proposée en se basant sur les mécanismes pathologiques de la douleur neuropathique. Lors d'une lésion périphérique une douleur neuropathique peut se développer et affecter le territoire des nerfs lésés mais aussi les territoires adjacents des nerfs non-lésés. Une hyperexcitabilité des neurones apparaît au niveau des ganglions spinaux (DRG) et de la corne dorsale (DH) de la moelle épinière. Le but de ce travail consiste à mettre en évidence les modifications moléculaires associées aux nocicepteurs lésés et non-lésés au niveau des DRG et des laminae I et II de la corne dorsale, là où l'information nociceptive est intégrée. Pour étudier les changements moléculaires liés à la douleur neuropathique nous utilisons le modèle animal d'épargne du nerf sural (spared nerve injury model, SNI) une semaine après la lésion. Pour la sélection du tissu d'intérêt nous avons employé la technique de la microdissection au laser, afin de sélectionner une sous-population spécifique de cellules (notamment les nocicepteurs lésés ou non-lésés) mais également de prélever le tissu correspondant dans les laminae superficielles. Ce travail est couplé à l'analyse à large spectre du transcriptome par puce ADN (microarray). Par ailleurs, nous avons étudié les courants électriques et les propriétés biophysiques des canaux sodiques (Na,,ls) dans les neurones lésés et non-lésés des DRG. Aussi bien dans le système nerveux périphérique, entre les neurones lésés et non-lésés, qu'au niveau central avec les aires recevant les projections des nocicepteurs lésés ou non-lésés, l'analyse du transcriptome montre des différences de profil d'expression. En effet, nous avons constaté des changements transcriptionnels importants dans les nocicepteurs lésés (1561 gènes, > 1.5x et pairwise comparaison > 77%) ainsi que dans les laminae correspondantes (618 gènes), alors que ces modifications transcriptionelles sont mineures au niveau des nocicepteurs non-lésés (60 gènes), mais important dans leurs laminae de projection (459 gènes). Au niveau des nocicepteurs, en utilisant la classification par groupes fonctionnels (Gene Ontology), nous avons observé que plusieurs processus biologiques sont modifiés. Ainsi des fonctions telles que la traduction des signaux cellulaires, l'organisation du cytosquelette ainsi que les mécanismes de réponse au stress sont affectés. Par contre dans les neurones non-lésés seuls les processus biologiques liés au métabolisme et au développement sont modifiés. Au niveau de la corne dorsale de la moelle, nous avons observé des modifications importantes des processus immuno-inflammatoires dans l'aire affectée par les nerfs lésés et des changements associés à l'organisation et la transmission synaptique au niveau de l'aire des nerfs non-lésés. L'analyse approfondie des canaux sodiques a démontré plusieurs changements d'expression, principalement dans les neurones lésés. Les analyses fonctionnelles n'indiquent aucune différence entre les densités de courant tétrodotoxine-sensible (TTX-S) dans les neurones lésés et non-lésés même si les niveaux d'expression des ARNm des sous-unités TTX-S sont modifiés dans les neurones lésés. L'inactivation basale dépendante du voltage des canaux tétrodotoxine-insensible (TTX-R) est déplacée vers des potentiels positifs dans les cellules lésées et non-lésées. En revanche la vitesse de récupération des courants TTX-S et TTX-R après inactivation est accélérée dans les neurones lésés. Ces changements pourraient être à l'origine de l'altération de l'activité électrique des neurones sensoriels dans le contexte des douleurs neuropathiques. En résumé, ces résultats suggèrent l'existence de mécanismes différenciés affectant les neurones lésés et les neurones adjacents non-lésés lors de la mise en place la douleur neuropathique. De plus, les changements centraux au niveau de la moelle épinière qui surviennent après lésion sont probablement intégrés différemment selon la perception de signaux des neurones périphériques lésés ou non-lésés. En conclusion, ces modulations complexes et distinctes sont probablement des acteurs essentiels impliqués dans la genèse et la persistance des douleurs neuropathiques. ABSTRACT : Neuropathic pain (NP) results from damage or dysfunction of the peripheral or central nervous system. Symptoms associated with NP are severe and difficult to treat. Targeting NP mechanisms and their translation into symptoms may offer a better therapeutic approach.Hyperexcitability of the peripheral and central nervous system occurs in the dorsal root ganglia (DRG) and the dorsal horn (DH) of the spinal cord. We aimed to identify transcriptional variations in injured and in adjacent non-injured nociceptors as well as in corresponding laminae I and II of DH receiving their inputs.We investigated changes one week after the injury induced by the spared nerve injury model of NP. We employed the laser capture microdissection (LCM) for the procurement of specific cell-types (enrichment in nociceptors of injured/non-injured neurons) and laminae in combination with transcriptional analysis by microarray. In addition, we studied functionál properties and currents of sodium channels (Nav1s) in injured and neighboring non-injured DRG neurons.Microarray analysis at the periphery between injured and non-injured DRG neurons and centrally between the area of central projections from injured and non-injured neurons show significant and differential expression patterns. We reported changes in injured nociceptors (1561 genes, > 1.5 fold, >77% pairwise comparison) and in corresponding DH laminae (618 genes), while less modifications occurred in non-injured nociceptors (60 genes) and in corresponding DH laminae (459 genes). At the periphery, we observed by Gene Ontology the involvement of multiple biological processes in injured neurons such as signal transduction, cytoskeleton organization or stress responses. On contrast, functional overrepresentations in non-injured neurons were noted only in metabolic or developmentally related mechanisms. At the level of superficial laminae of the dorsal horn, we reported changes of immune and inflammatory processes in injured-related DH and changes associated with synaptic organization and transmission in DH corresponding to non-injured neurons. Further transcriptional analysis of Nav1s indicated several changes in injured neurons. Functional analyses of Nav1s have established no difference in tetrodotoxin-sensitive (TTX-S) current densities in both injured and non-injured neurons, despite changes in TTX-S Nav1s subunit mRNA levels. The tetrodotoxin-resistant (TTX-R) voltage dependence of steady state inactivation was shifted to more positive potentials in both injured and non-injured neurons, and the rate of recovery from inactivation of TTX-S and TTX-R currents was accelerated in injured neurons. These changes may lead to alterations in neuronal electrogenesis. Taken together, these findings suggest different mechanisms occurring in the injured neurons and the adjacent non-injured ones. Moreover, central changes after injury are probably driven in a different manner if they receive inputs from injured or non-injured neurons. Together, these distinct and complex modulations may contribute to NP.
Resumo:
Periodontal tissue engineering is a complex process requiring the regeneration of bone, cementum, and periodontal ligament (PDL). Since cementum regeneration is poorly understood, we used a dog model of dental pulpal necrosis and in vitro cellular wounding and mineralization assays to determine the mechanism of action of calcium hydroxide, Ca(OH)(2), in cementogenesis. Laser capture microdissection (LCM) followed by qRT-PCR were used to assay responses of periapical tissues to Ca(OH)(2) treatment. Additionally, viability, proliferation, migration, and mineralization responses of human mesenchymal PDL cells to Ca(OH)(2) were assayed. Finally, biochemical inhibitors and siRNA were used to investigate Ca(OH)(2)-mediated signaling in PDL cell differentiation. In vivo, Ca(OH)(2)-treated teeth formed a neocementum in a STRO-1- and cementum protein-1 (CEMP1)-positive cellular environment. LCM-harvested tissues adjacent to the neocementum exhibited higher mRNA levels for CEMP1, integrin-binding sialoprotein, and Runx2 than central PDL cells. In vitro, Ca(OH)(2) and CEMP1 promoted STRO-1-positive cell proliferation, migration, and wound closure. Ca(OH)(2) stimulated expression of the cementum-specific proteins CEMP1 and PTPLA/CAP in an ERK-dependent manner. Lastly, Ca(OH)(2) stimulated mineralization by CEMP1-positive cells. Blocking CEMP1 and ERK function abolished Ca(OH)(2)-induced mineralization, confirming a role for CEMP1 and ERK in the process. Ca(OH)(2) promotes cementogenesis and recruits STRO-1-positive mesenchymal PDL cells to undergo cementoblastic differentiation and mineralization via a CEMP1- and ERK-dependent pathway.