999 resultados para Laser-acceleration
Resumo:
The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.
Resumo:
A method for efficient laser acceleration of heavy ions by electrostatic shock is investigated using particle-in-cell (PIC) simulation and analytical modeling. When a small number of heavy ions are mixed with light ions, the heavy ions can be accelerated to the same velocity as the light ions so that they gain much higher energy because of their large mass. Accordingly, a sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.
Resumo:
Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as 15% at 35 MeV. These results and high resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500 fs, ¼ 1054 nm). The conversion ef?ciency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.
Resumo:
Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Resumo:
An ultra-relativistic electron beam passing through a thick, high-Z solid target triggers an electromagnetic cascade, whereby a large number of high energy photons and electron-positron pairs are produced. By exploiting this physical process, we present here the first experimental evidence of the generation of ultra-short, highly collimated and ultra-relativistic positron beams following the interaction of a laser-wake field accelerated electron beam with high-Z solid targets. Clear evidence has also been obtained of the generation of GeV electron-positron jets with variable composition depending on the solid target material and thickness. The percentage of positrons in the overall leptonic beam has been observed to vary from a few per cent up to almost fifty per cent, implying a quasi-neutral electron-positron beam. We anticipate that these beams will be of direct relevance to the laboratory study of astrophysical leptonic jets and their interaction with the interstellar medium.
Resumo:
Auf dem Gebiet der Teilchenbeschleunigung mittels Hochintensitäts-Lasern wurden in der letzten Dekade viele erfolgreiche Entwicklungen hin zu immer höheren Energien und größeren Teilchenzahlen veröffentlicht. In den meisten Fällen wurde der sogenannte TNSA-Prozess (engl. Target-Normal-Sheath-Acceleration (TNSA)) untersucht. Bei diesem Prozess erfolgt die Beschleunigung in dem an der Oberfläche durch Ladungstrennung erzeugten Potential. Ein kaum vermeidbares Problem ist hierbei das resultierende breite Energie-Spektrum der beschleunigten Teilchen. Diese Situation konnte in den letzten Jahren zwar verbessert, aber nicht vollständig gelöst werden. Für Intensitäten größer 10^(20..21) W/cm^2 sagen theoretische Modellrechnungen eine auf dem Lichtdruck basierende Beschleunigung (engl. Radiation-Pressure-Acceleration (RPA)) mit deutlich eingegrenztem, fast monoenergetischem Spektrum voraus. Im Rahmen dieser Arbeit wurde ein Experiment zur Untersuchung dieses Prozesses bei Intensitäten von einigen 10^19 W/cm^2 durchgeführt. Dazu wurden zunächst spezielle Targets entwickelt und als Patent angemeldet, welche den Experimentbedingungen angepasst sind. Durch die Auslegung des experimentellen Aufbaus und der Diagnostiken auf hohe Repetitionsraten, in Verbindung mit einem geeigneten Lasersystem, konnte auf Basis einer Statistik von mehreren Tausend Schüssen ein großer Parameterraum untersucht werden. Untersucht wurden unter anderem die Abhängigkeit von Targetmaterial und Dicke, Intensität, Laserpolarisation und Vorplasmabedingungen. Aus den gewonnenen Daten und Vergleichen mit 2-dimensionalen numerischen Simulationen konnte ein Modell des Beschleunigungsprozesses aufgestellt und durch Vergleich mit den experimentellen Ergebnissen geprüft werden. Dabei wurden klare Indizien für die Existenz eines neuen, nicht feldinduzierten, Beschleunigungsprozesses gefunden. Darüber hinaus wurde zur Polarisationsbeeinflussung ein optisches System entwickelt, das ausschließlich mit reflexiven Elementen arbeitet. Damit konnten viele Nachteile bestehender, auf Verzögerungsplatten beruhender Elemente vermieden, und die Anwendbarkeit bei hohen Laserenergien erreicht werden.
Resumo:
An alternative fast-ignition method is proposed involving the formation of a hot spot outside the precompressed fusion-fuel core by a series of shocks driven directly by the light pressure of laser pulses of increasing intensities. It is shown that a hot spot, which can be of different material from that of the fuel core, with temperature similar to 10 keV and density similar to 200 g/cm(2), can be formed. Being an electrically neutral plasma, the hot spot can easily be sent into the fuel core. (c) 2005 American Institute of Physics.
Resumo:
Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.
Resumo:
Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.
Resumo:
Electron acceleration in a tightly focused ultra-intensity linear polarized laser beam is investigated numerically. It has been found that the acceleration is strong phase dependent and is periodic to the variety of the initial laser field phase. When optimal initial parameters are chosen, the electron can be accelerated effectively. The accelerated electrons are emitted in pulses of which the full width is less than the half period of the laser field.