936 resultados para Laser scanning data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only very few constructed facilities today have a complete record of as-built information. Despite the growing use of Building Information Modelling and the improvement in as-built records, several more years will be required before guidelines that require as-built data modelling will be implemented for the majority of constructed facilities, and this will still not address the stock of existing buildings. A technical solution for scanning buildings and compiling Building Information Models is needed. However, this is a multidisciplinary problem, requiring expertise in scanning, computer vision and videogrammetry, machine learning, and parametric object modelling. This paper outlines the technical approach proposed by a consortium of researchers that has gathered to tackle the ambitious goal of automating as-built modelling as far as possible. The top level framework of the proposed solution is presented, and each process, input and output is explained, along with the steps needed to validate them. Preliminary experiments on the earlier stages (i.e. processes) of the framework proposed are conducted and results are shown; the work toward implementation of the remainder is ongoing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An indirect method for the georeferencing of 3D point clouds obtained with terrestrial laser scanning (TLS) data using control lines is presented. This technique could be used for rapid data acquisition where resources do not permit the use of expensive navigation sensors or the placement of pre-signalised targets. The most important characteristic is the development of a mathematical model based on the principle that the direction vector of the TLS straight line is coplanar with the plane defined by the origin of the TLS system, one endpoint of a control line and the direction vector of the control line in the ground reference coordinate system. The transformation parameters are estimated by minimising the distance between the control lines and their corresponding TLS straight lines. The proposed method was tested using both simulated and real data, and the advantages of this new approach are compared with conventional surveying methods. © 2013 This article is a U.S. Government work and is in the public domain in the USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The training of Irish soldiers for service in the British Army during the First World War required the establishment of training camps across the island, such as at Shane’s Castle Estate, close to Randalstown in County Antrim, Northern Ireland. The camp saw active use from 1914 to 1918 but after the war it was demilitarised and returned to use as farmland. Archaeological investigations have revealed that earthwork traces of the camp can still be identified in the modern landscape. Comparison of a map of the camp from 1915, Airborne Laser Scanning data and aerial photographs has enabled the footprint of the camp to be re-established, while also helping to identify the location of specific elements such as the remains of barrack huts, stores, mess halls and officers’ quarters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, histograms, and normal probability plots. The results showed that the internal measurement accuracy of TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was achieved with GPS data, both on sloped terrain (RMSE 0.16. m) and flat terrain (RMSE 0.02. m). TLS surveying was the most efficient overall but veracity of terrain representation was subject to dense vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken (RMSE 0.52. m) although it was the second highest on the flat unobscured terrain (RMSE 0.07. m). ALS data represented the sloped terrain more realistically (RMSE 0.23. m) than the TLS. However, due to a systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29. m) which was above the level stated by the data provider. Error distribution models were more closely approximated by normal distribution defined using median and normalized median absolute deviation which supports the use of the robust measures in DEM error modelling and its propagation. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AimTo evaluate the antibiofilm activity of sodium hypochlorite (NaOCl) and chlorhexidine (CHX) solutions associated with cetrimide (CTR), and QMiX using confocal laser scanning microscopy.MethodologyEnterococcus faecalis (ATCC- 29212) biofilms were induced on bovine dentine blocks for 14days. The dentine blocks containing biofilm were immersed for 1min in the following solutions: 2.5% NaOCl; 2.5% NaOCl+0.2% CTR; 2% CHX; 2% CHX+0.2% CTR; 0.2% CTR; QMiX. After contact with the solutions, the dentine blocks were stained with Live/Dead((R)) BacLight for analysis of the remaining biofilm using confocal laser scanning microscope. Images were evaluated using the BioImage_L software to determine the total biovolume (m(3)), the green biovolume (live cells) (m(3)) and the percentage of substrate coverage (%). The data were subjected to nonparametric statistical test using Kruskal-Wallis and Dunn's tests at 5% significance level.ResultsAfter exposure to irrigants, the total biovolume observed for CHX, CHX+CTR, CTR, QMiX was similar to distilled water (P>0.05). NaOCl and NaOCl+CTR had the lowest total and green biovolume. The CTR and QMiX had intermediate green biovolume, with greater antibacterial activity than CHX and CHX+CTR (P<0.05). The NaOCl and NaOCl+CTR solutions were associated with microorganism removal and substrate cleaning ability.ConclusionsNaOCl and NaOCl+CTR solutions were effective on microorganism viability and were able to eliminate biofilm. The addition of cetrimide did not influence antibacterial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser scanning is a terrestrial laser-imaging system that creates highly accurate three-dimensional images of objects for use in standard computer-aided design software packages. This report describes results of a pilot study to investigate the use of laser scanning for transportation applications in Iowa. After an initial training period on the use of the scanner and Cyclone software, pilot tests were performed on the following projects: intersection and railroad bridge for training purposes; section of highway to determine elevation accuracy and pair of bridges to determine level of detail that can be captured; new concrete pavement to determine smoothness; bridge beams to determine camber for deck-loading calculations; stockpile to determine volume; and borrow pit to determine volume. Results show that it is possible to obtain 2-6 mm precision with the laser scanner as claimed by the manufacturer compared to approximately one-inch precision with aerial photogrammetry using a helicopter. A cost comparison between helicopter photogrammetry and laser scanning showed that laser scanning was approximately 30 percent higher in cost depending on assumptions. Laser scanning can become more competitive to helicopter photogrammetry by elevating the scanner on a boom truck and capturing both sides of a divided roadway at the same time. Two- and three-dimensional drawings were created in MicroStation for one of the scanned highway bridges. It was demonstrated that it is possible to create such drawings within the accuracy of this technology. It was discovered that a significant amount of time is necessary to convert point cloud images into drawings. As this technology matures, this task should become less time consuming. It appears that laser scanning technology does indeed have a place in the Iowa Department of Transportation design and construction toolbox. Based on results from this study, laser scanning can be used cost effectively for preliminary surveys to develop TIN meshes of roadway surfaces. It also appears that this technique can be used quite effectively to measure bridge beam camber in a safer and quicker fashion compared to conventional approaches. Volume calculations are also possible using laser scanning. It seems that measuring quantities of rock could be an area where this technology would be quite beneficial since accuracy is more important with this material compared to soil. Other applications for laser scanning could include developing as-built drawings of historical structures such as the bridges of Madison County. This technology could also be useful where safety is a concern such as accurately measuring the surface of a highway active with traffic or scanning the underside of a bridge damaged by a truck. It is recommended that the Iowa Department of Transportation initially rent the scanner when it is needed and purchase the software. With time, it may be cost justifiable to purchase the scanner as well. Laser scanning consultants can be hired as well but at a higher cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To investigate the utility of using non-contact laser-scanning confocal microscopy (NC-LSCM), compared with the more conventional contact laser-scanning confocal microscopy (C-LSCM), for examining corneal substructures in vivo. METHODS An attempt was made to capture representative images from the tear film and all layers of the cornea of a healthy, 35 year old female, using both NC-LSCM and C-LSCM, on separate days. RESULTS Using NC-LSCM, good quality images were obtained of the tear film, stroma, and a section of endothelium, but the corneal depth of the images of these various substructures could not be ascertained. Using C-LSCM, good quality, full-field images were obtained of the epithelium, subbasal nerve plexus, stroma, and endothelium, and the corneal depth of each of the captured images could be ascertained. CONCLUSIONS NC-LSCM may find general use for clinical examination of the tear film, stroma and endothelium, with the caveat that the depth of stromal images cannot be determined when using this technique. This technique also facilitates image capture of oblique sections of multiple corneal layers. The inability to clearly and consistently image thin corneal substructures - such as the tear film, subbasal nerve plexus and endothelium - is a key limitation of NC-LSCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.