912 resultados para Laser pulse shaping


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pulses have been obtained. The minimum pulse width achieved was 0.1 msec. A representation of the output versus input light signals gives an hysteresys cycle in the asymmetrical case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report a new method of laser pulse shaping by the use of liquid crystals as non linear materials. The basis of this method is similar to the one reported by us for an hybrid optical bistable device, but with a different electronic circuitry and feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing. (C) 2008 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary meta-algorithms for pulse shaping of broadband femtosecond duration laser pulses are proposed. The genetic algorithm searching the evolutionary landscape for desired pulse shapes consists of a population of waveforms (genes), each made from two concatenated vectors, specifying phases and magnitudes, respectively, over a range of frequencies. Frequency domain operators such as mutation, two-point crossover average crossover, polynomial phase mutation, creep and three-point smoothing as well as a time-domain crossover are combined to produce fitter offsprings at each iteration step. The algorithm applies roulette wheel selection; elitists and linear fitness scaling to the gene population. A differential evolution (DE) operator that provides a source of directed mutation and new wavelet operators are proposed. Using properly tuned parameters for DE, the meta-algorithm is used to solve a waveform matching problem. Tuning allows either a greedy directed search near the best known solution or a robust search across the entire parameter space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the work reported here we were able to control the photobleaching of poly[2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), excited by two-photon absorption, using femtosecond pulse shaping. By applying a cosine-like spectral phase mask, we observe a reduction of three times in the photobleaching rate, while the fluorescence intensity decreases by 20%, in comparison to the values obtained with a Fourier-transform-limited pulse. These results demonstrate an interesting trade-off between photobleaching rate and nonlinear fluorescence intensity. The possible mechanism behind this process is discussed in terms of the pulse spectral profile and the absorbance band of MEH-PPV. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a simple method for passive nonlinear optical pulse shaping that utilizes pulse prechirping and nonlinear propagation in a normally dispersive nonlinear fiber to generate various temporal waveforms of practical interest from conventional laser pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of extensive numerical modelling we have demonstrated the possibility of nonlinear pulse shaping in a mode-locked fibre laser using control of the intra-cavity propagation dynamics by adjustment of the normal net dispersion and integrated gain. Beside self-similar mode-locking, the existence of a novel type of pulse shaping regime that produces pulses with a triangular temporal intensity profile and a linear frequency chirp has been observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.