939 resultados para Laser cutting
Resumo:
The purpose of this thesis is to reveal how the laser cutting parameters influence lasercutting of particleboard, HDF and MDF. The literature review introduces the basic principle of CO2 laser, CO2 laser equipment and its usage in cutting of wood-based materials. The experimental part focuses on the discussion and analysis ofthe test data and attempts to draw conclusions on the influence of various parameters, including laser power, focal length of the lens and cutting gas, on the cutting speed and kerf quality. The tested materials include various thicknesses of particleboard, HDF and MDF samples. A TRUMPF TLF2700 HQ laser equipment was used for the experiments. To obtain valid data, the test samples must be completely cut through without any bonding of wood fibre. The maximum cutting speed is linear dependent on the laser power in thecondition that the other parameters are constant. For each thickness of a specific material type, there is a minimum laser power for cutting. Normally, the topand bottom kerf widths increase with the enhancement of laser power. There may be a critical laser power which can generate the minimum cross-sectional kerf width. Lens of larger focal length may achieve higher cutting speed. As the focal length becomes larger, the top kerf width tends to increase while the bottom andcross-sectional kerf widths to the opposite. Of all cutting gases, oxygen can help achieve higher cutting speed. The gas pressure of nitrogen does not seem to have strong influence on the cutting result. Generally, 2 bar air is more preferable for higher cutting speed. For particleboard and MDF samples of larger thickness than 12 mm, 2 bar argon can be used to reach remarkably higher cutting speed than the 5 bar. Generally, the 190.5 mm lens can produce smallest total kerf width. The kerf sides of thicker samples are darker than the thinner ones. The sample darkness tends to be lower as laser power increased. 63.5 mm lens seemed tocause more darkness than other lens. 5 bar cutting gases can produce less dark side kerfs than 2 bar ones. Oxygen normally causes darker kerfs than other gases. No distinct differences were found between nitrogen and argon.
Resumo:
The thin disk and fiber lasers are new solid-state laser technologies that offer a combinationof high beam quality and a wavelength that is easily absorbed by metal surfacesand are expected to challenge the CO2 and Nd:YAG lasers in cutting of metals ofthick sections (thickness greater than 2mm). This thesis studied the potential of the disk and fiber lasers for cutting applications and the benefits of their better beam quality. The literature review covered the principles of the disk laser, high power fiber laser, CO2 laser and Nd:YAG laser as well as the principle of laser cutting. The cutting experiments were made with thedisk, fiber and CO2 lasers using nitrogen as an assist gas. The test material was austenitic stainless steel of sheet thickness 1.3mm, 2.3mm, 4.3mm and 6.2mm for the disk and fiber laser cutting experiments and sheet thickness of 1.3mm, 1.85mm, 4.4mm and 6.4mm for the CO2 laser cutting experiments. The experiments focused on the maximum cutting speeds with appropriate cut quality. Kerf width, cutedge perpendicularity and surface roughness were the cut characteristics used to analyze the cut quality. Attempts were made to draw conclusions on the influence of high beam quality on the cutting speed and cut quality. The cutting speeds were enormous for the disk and fiber laser cutting experiments with the 1.3mm and 2.3mm sheet thickness and the cut quality was good. The disk and fiber laser cutting speeds were lower at 4.3mm and 6.2mm sheet thickness but there was still a considerable percentage increase in cutting speeds compared to the CO2 laser cutting speeds at similar sheet thickness. However, the cut quality for 6.2mm thickness was not very good for the disk and fiber laser cutting experiments but could probably be improved by proper selection of cutting parameters.
Resumo:
Fiber laser for materials processing have undergone a rapid development in the pastseveral years. As fiber laser provides a combination of high beam quality and awavelength that is easily absorbed by metal surfaces, the named future laser isexpected to challenge the CO2 and Nd:YAG lasers in the area of metal cutting. This thesis studied the performance of fiber laser cutting mild steel. In the literature review part, it introduced the laser cutting principle and the principle of fiber laser including the newest development of fiber laser cuttingtechnology. Because the fiber laser cutting mild steel is a very young technology, a preliminary test was made in order to investigate effect of the cutting parameters on cut quality. Then the formal fiber laser cutting experiment was madeby using 3 mm thickness S355 steel with oxygen as assistant gas. The experimentwas focused on the cut quality with maximum cutting speed and minimum oxygen gas pressure. And the cut quality is mainly decided by the kerf width, perpendicularity tolerance, surface roughness and striation patterns. After analysis the cutting result, several conclusions were made. Although the best result got in the experiment is not perfect as predicted, the whole result of the test can be accepted. Compared with CO2 laser, a higher cutting speed was achieved by fiber laser with very low oxygen gas pressure. A further improvement about the cutting quality might be possible by proper selection of process parameters. And in order to investigate the cutting performance more clearly, a future study about cutting different thickness mild steel and different shape was recommended.
Resumo:
The purpose of this study was to investigate different laser cutting nozzles, nozzle flows and possibilities to improve nozzle flow. Another goal was to design new nozzle configuration in which laser cutting would succeed with better cutting speed and smaller gas consumption. Nozzles and nozzle flows were studied with various methods. Computational fluid dynamics was used to calculate old, convergent nozzles and new convergent-divergent nozzles. Measurement apparatus was used to measure both nozzle types. In cutting tests different materials were cut with new nozzles. With the use of design convergent-divergent nozzles 25 % better cutting speed and 33 % smaller gas consumption were achieved when cutting quality was good. Computational fluid dynamics was also discovered to be useful aid in nozzle design.
Resumo:
Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated
Resumo:
Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.
Resumo:
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.
Resumo:
O presente trabalho visa apresentar a temática da otimização da produção de corte laser numa empresa do ramo da indústria metalomecânica, denominada Sermec Laser e situada no concelho da Maia no Distrito do Porto. Para alcançar este objetivo foi necessário conhecer o funcionamento atual do processo, como por exemplo, os seus intervenientes, as taxas de ocupação do equipamento de corte a laser e os procedimentos. Só depois de ser explorada essa vertente será possível desenvolver um plano com vista a melhorar esse processo. Este projeto espera criar um plano de melhoria que será testado e, quando for validado, será implementado. As melhorias propostas por este plano passam pelo aumento da eficiência do processo de corte a laser e a alteração de parte do layout da empresa de forma a facilitar e agilizar este mesmo processo. O objetivo final será acrescentar mais valor ao processo, reduzindo os seus desperdícios. Com esta melhoria a empresa ficará a ganhar, pois irá produzir de forma mais ajustada às suas necessidades.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
It is well known that lasers have helped to increase efficiency and to reduce production costs in the photovoltaic (PV) sector in the last two decades, appearing in most cases as the ideal tool to solve some of the critical bottlenecks of production both in thin film (TF) and crystalline silicon (c-Si) technologies. The accumulated experience in these fields has brought as a consequence the possibility of using laser technology to produce new Building Integrated Photovoltaics (BIPV) products with a high degree of customization. However, to produce efficiently these personalized products it is necessary the development of optimized laser processes able to transform standard products in customized items oriented to the BIPV market. In particular, the production of semitransparencies and/or freeform geometries in TF a-Si modules and standard c-Si modules is an application of great interest in this market. In this work we present results of customization of both TF a-Si modules and standard monocrystalline (m-Si) and policrystalline silicon (pc-Si) modules using laser ablation and laser cutting processes. A discussion about the laser processes parameterization to guarantee the functionality of the device is included. Finally some examples of final devices are presented with a full discussion of the process approach used in their fabrication.
Resumo:
A process for preparing three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films is introduced. Samples are made from commercial FEP films by means of laser cutting, laser bonding, electrode evaporation, and high-field poling. The observed dielectric-resonance spectra demonstrate the piezoelectricity of the FEP sandwiches. Piezoelectric d (33) coefficients up to a few hundred pC/N are achieved. Charging at elevated temperatures can increase the thermal stability of the piezoelectrets. Isothermal experiments for approximately 15 min demonstrate that samples charged at 140A degrees C keep their piezoelectric activity up to at least 120A degrees C and retain 70% of their initial d (33) even at 130A degrees C. Acoustical measurements show a relatively flat frequency response in the range between 300 Hz and 20 kHz.
Resumo:
Este projeto foi realizado na Empresa Fernando Jesus Mourão & Cª Lda, durante o ano de 2012, e teve como objetivo a melhoria do processo produtivo. Esta melhoria assentou na identificação de possíveis pontos de desperdício, no estudo e avaliação de soluções e por fim na definição de propostas de melhoria globais que visem ajustar o fluxo do processo produtivo à procura e simultaneamente minimizar custos operacionais. De forma a atingir estas metas, foi feito um levantamento exaustivo do processo produtivo e das respetivas operações. Neste estudo, apesar do elevado numero de oportunidades de melhoria, foi possível identificar duas áreas que se revelaram criticas e fundamentais para a introdução da filosofia de melhoria continua na empresa. Estas áreas que são o objeto de estudo desta dissertação são: o corte laser e a organização do pavilhão 3. Uma vez identificados as áreas críticas, procedeu-se a uma análise e definição das ações de melhoria a empreender de modo a melhorar o fluxo produtivo e a sua organização, e simultaneamente reduzir custos. Na área de corte laser procurou-se implementar a filosofia de produção “Lean” nomeadamente através da ferramenta de análise PDCA (Plan-Do-Check-Act), como ferramenta auxiliar do estudo para elaborar um plano de ação, implementar as ações, analisar os resultados e procurar a manutenção dos mesmos. Na intervenção do pavilhão 3 foi usada a técnica dos 5S para organizar e agilizar o funcionamento do mesmo. Todo o trabalho assenta na filosofia Lean e nos seus princípios, tendo-se por isso utilizado as ferramentas especificas Lean na concretização das tarefas executadas no seu âmbito. Para medir os resultados, antes e depois das ações implementadas, foi utilizada o indicador de eficiência (Overall Equipment Effectiveness) para o caso do processo de corte laser. Após a implementação das medidas definidas no processo de corte laser foi possível observar uma melhoria do indicador OEE de cerca de 20 por cento. Por outro lado as melhorias implementadas através da ferramenta dos 5S no pavilhão 3, trouxe ganhos visíveis de aumento de produtividade que beneficiaram o tempo de resposta da empresa.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Les empreses sempre han buscat com optimitzar el màxim els seus recursos i ser més eficients a la hora de realitzar les tasques que li han estat encomanades. És per aquest motiu que constantment les empreses realitzen estudis i valoracions de com poder millorar dia a dia. Aquest fet no és diferenciador a l’empresa Serralleria i Alumini Vilaró (S.A.V), que dia a dia estudia com optimitzar els seus processos o de vegades introduir-ne de nous per tal d’expandir la seva oferta de serveis. L’empresa és dedica a la fabricació de peces metàl•liques el procés ja sigui només de tall i mecanitzat, plegat, soldadura, acabats en inoxidable, pintura i fins i tot embalatge pel que fa a la part productiva, respecte a la part d’oficina tècnica també ofereix serveis de desenvolupament de productes segons especificacions del client i reenginyeria de qualsevol producte, analitzant la part que és vol millorar. En l’actualitat l’empresa ha detectat una mancança que creu que es podria solucionar, el problema és que l’empresa disposa de varies màquines de tall, entre les quals hi ha una màquina de tall làser i el problema principal és que la càrrega de les planxes del calaix de magatzem a la bancada de la màquina es realitza o bé manualment o a través d’un gripper sostingut al pont grua, depenent del pes de la planxa a transportar. L’objectiu principal d’aquest treball és fer el disseny d’una màquina que permeti automatitzar el procés de transportar la planxa metàl•lica del calaix de magatzem dipositat sobre una taula mòbil a la bancada de la màquina de tall. El disseny que pretenem fer és complet començant per fer un disseny estructural de la màquina més els seus respectius càlculs, moviments que volem aconseguir, tria de components ( motors, sensors ...), elaboració d’un pressupost per poder fer una estimació i finalment la elaboració del programa de control de tota la màquina més la interacció amb la màquina a través d’una pantalla tàctil. Es a dir, el que pretenem és realitzar un projecte que puguem fabricar en la realitat utilitzant tota la informació continguda dins del mateix