942 resultados para Laser beam surface modification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In vivo bone response was assessed by removal torque, hystological and histometrical analysis on a recently developed biomedical Ti-15Mo alloy, after surface modification by laser beam irradiation, installed in the tibia of rabbits. Materials and Methods: A total of 32 wide cylindrical Ti-15Mo dental implants were obtained (10mm × 3.75mm). The implants were divided into two groups: 1) control samples (Machined surface - MS) and 2) implants with their surface modified by Laser beam-irradiation (Test samples - LS). Six implants of each surface were used for removal torque test and 10 of each surface for histological and histometrical analysis. The implants were placed in the tibial metaphyses of rabbits. Results: Average removal torque was 51.5Ncm to MS and >90Ncm to LS. Bone-to-implant-contact percentage was significantly higher for LS implants both in the cortical and marrow regions. Conclusions: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for biomedical application. © 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the medical fields of bone fixation devices and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), L-lactide/ DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid) (PLGA). This work investigates the further potential of e-beam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. A Dynamatron Continuous DC e-beam unit (Synergy Health, UK), with beam energies of 0.5, 0.75, and 1.5 MeV, was used for the irradiation of PLLA samples with delivered surface doses of 150 or 500 kGy at each energy level. The chosen conditions reflect the need to achieve a specific surface modification for the control of surface degradation as demonstrated in previous work. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy.
Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment. In conclusion electron beam surface modification has been found to modify both the surface-to-bulk bioresorption profile and the surface hydrophilicity. Both could provide benefits in relation to the performance of implantable medical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimal algorithm of manufacturing path planner for intelligent laser surface modification is presented. Elements included in the optimal objective have been analyzed. A 6-D manufacture trace that satisfies the requirements of special craft and 5-axis laser processing robot system has been generated from the path planner by method of parallel section in which combinations of modification spots size with curvature of processing surfaces and modification craft parameters are considered. Related experiments have been successfully carried out with the computer integrated multifunctional laser manufacturing system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface modification and crystallization process of BaO-B2O3-SiO2 glass compositions when exposed to CO2 laser irradiation was evaluated as a function of the laser power, irradiation time and surface condition. The glass surface was modified by the application of laser power exceeding 0.40 W and an irradiation time of more than 300 s. Micro-Raman and X-ray diffraction measurements revealed at high laser power the formation of beta-BaB2O4 (beta-BBO) crystalline phase. The crystallization of the irradiated region was enhanced when beta-BBO micrometer sized particles were dispersed on the surface of the glass sample. The intensity of the second harmonic generation observed in the crystallized region was found to depend mainly on the condition of the glassy surface prior to glass irradiation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)