883 resultados para Laser applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PbO-Bi2O3-Ga2O3 glasses doped with different concentrations of Yb3+ are presented. The spectroscopic properties and laser parameters are calculated and a comparison between different results obtained when calculating the Yb3+ emission cross-section with the reciprocity method and with the Fuchtbauer-Ladenburg formula is presented. The behavior of the near-infrared luminescence is described theoretically by a rate equation and compared with the experimental results. This host doped with Yb3+ is a promising material for laser action at 1019 nm, with properties similar to other known glasses used as active laser media; the emission cross-section of 1.1 x 10(-20) cm(2), the high absorption cross-section (of 2.0 x 10(-20) cm(2)) and a minimum pump intensity of 2.4 kW/cm(2) are interesting properties for short pulse generation. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs), and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask, and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2 μm Tm-doped CW and mode locked fiber lasers, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By employing a uniformly compact side-pumping system, a high-energy electro-optical Q-switched Nd:YAG ceramic laser has been demonstrated. With 420 W quasi-cw laser-diode-array pumping at 808 ran and a 100 Hz modulating repetition rate, 50 mJ output energy at 1064 nm was obtained with 10 ns pulse width, 5 W average output power, and 5 MW peak power. Its corresponding slope efficiency was 29.8%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output energy could be expected. Laser parameters between ceramic and single-crystal Nd:YAG lasers have been compared, and pulse characteristics of Nd:YAG ceramic with different repetition rate have been investigated in detail. The still-evolving Nd:YAG ceramics are potential super excellent media for high-energy laser applications. (C) 2007 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new Yb-doped oxyorthosilicate laser crystal, Yb:Gd2SiO5 (Yb:GSO), has been grown by the Czochralski (Cz) method. The crystal structure was determined by means of X-ray diffraction analysis. Room temperature absorption and fluorescence spectra of Yb3+ ions in GSO crystal were measured. Then. spectroscopic parameters of Yb:GSO were calculated and compared with those of another Yb-doped oxyorthosilicate crystal Yb:YSO. Results indicated that Yb:GSO crystal seemed to be a very promising laser gain media in generating ultra-pulses and tunable solid state laser applications. As expected, the output power of 2.72 W at 1089 nm was achieved in Yb:GSO crystal with absorbed power of only 4.22 W at 976 nm, corresponding to the slope efficiency of 71.2% through the preliminary laser experiment. (c) 2005 Elsevier Ltd. All rights reserved.