989 resultados para Larval survival


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil-dwelling insect herbivores are significant pests in many managed ecosystems. Because eggs and larvae are difficult to observe, mathematical models have been developed to predict life-cycle events occurring in the soil. To date, these models have incorporated very little empirical information about how soil and drought conditions interact to shape these processes. This study investigated how soil temperature (10, 15, 20 and 25 °C), water content (0.02 (air dried), 0.10 and 0.25 g g−1) and pH (5, 7 and 9) interactively affected egg hatching and early larval lifespan of the clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae). Eggs developed over 3.5 times faster at 25 °C compared with 10 °C (hatching after 40.1 and 11.5 days, respectively). The effect of drought on S. lepidus eggs was investigated by exposing eggs to drought conditions before wetting the soil (2–12 days later) at four temperatures. No eggs hatched in dry soil, suggesting that S. lepidus eggs require water to remain viable. Eggs hatched significantly sooner in slightly acidic soil (pH 5) compared with soils with higher pH values. There was also a significant interaction between soil temperature, pH and soil water content. Egg viability was significantly reduced by exposure to drought. When exposed to 2–6 days of drought, egg viability was 80–100% at all temperatures but fell to 50% after 12 days exposure at 10 °C and did not hatch at all at 20 °C and above. Drought exposure also increased hatching time of viable eggs. The effects of soil conditions on unfed larvae were less influential, except for soil temperature which significantly reduced larval longevity by 57% when reared at 25 °C compared with 10 °C (4.1 and 9.7 days, respectively). The effects of soil conditions on S. lepidus eggs and larvae are discussed in the context of global climate change and how such empirically based information could be useful for refining existing mathematical models of these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of starvation on larvae of Ivory shell Babylonia formosae habei was studied in a laboratory experiment. Newly hatched veligers showed considerable tolerance to starvation due to their endogenous yolk material, and time to the point-of-no-return (PNR; the threshold point during starvation after which larvae can longer metamorphose even if food is provided) was calculated to be 104.5 h. However, starvation still affected larval growth, survival, and metamorphosis. Mean shell length of larvae increased 49.77 mum day(-1) for nonstarved, but only 11.13 mum day (-1) for larvae starved for 108 h. After larvae began feeding, their growth rates rapidly recovered to the level of the nonstarved following short periods of starvation (less than 48 h), but were inhibited and unable to ever reach the level of the nonstarved when being starved beyond 48 h. Percent metamorphosis was 53.75% for the nonstarved, but all larvae died before 10 days for those starved for 108 h. Starvation not only affected larval time to reach metamorphosis, but also caused the delay in the time to metamorphosis. For the nonstarved, larvae took only 11.5 days to reach spontaneous metamorphosis, but they took 20 days to reach spontaneous metamorphosis when starved for 96 h, and this duration of delayed metamorphosis reached 8.5 days. Furthermore, the importance of yolk material for maintaining larval survival of B. formosae habei during starvation periods is also discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here we tested the impact of long term (up to 16 months) and trans life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1200 µatm, compared to control 400 µatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5 fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2, had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well established that herbivorous insects respond to changes in plant odour production, but little attention has been given to whether these responses relate to direct fitness costs of plant volatile production on insect growth and survival. Here, we use transgenic Nicotiana tabacum (tobacco) plants that produce relatively large amounts of the volatile (S)-linalool to study whether the responses of egg-laying herbivorous insects to linalool production relate directly to the growth and survival of offspring. In choice tests, fewer eggs were laid on transgenic plants compared with non-transformed controls, indicating that increased linalool emissions have a deterrent effect on Helicoverpa armigera oviposition. Larval survival and larval mass after feeding on transgenic leaves, however, was comparable to non-transformed controls. (S)-linalool, whether in volatile or sequestered form, does not appear to have a direct effect on offspring fitness in this moth. We discuss how the ecology of this polyphagous moth species may necessitate a high tolerance for certain volatiles and their related non-volatile compounds, and suggest that responses by adult female H. armigera moths towards increased linalool production may be context specific and relate to other indirect effects on fitness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To determine the optimal larval density for hatchery culture of the clam Meretrix meretrix, experiments with stocking densities of 5, 10, 20, 40 and 60 larvae ml(-1) were designed, which included the developmental stages from D-veliger to 8 days postsettlement. Shell length, settlement time and survival rate of the larvae were recorded. Results showed that, at each sampling time, larvae reared at the highest density had the smallest mean size, whereas larvae reared at the lowest density had the largest mean size. Statistical differences in mean shell length at different stocking densities appeared from day 2, and greater differences occurred with increased culture time. Specific growth rate (SGR) in the rapid growing stage (day 0-3) was negatively correlated with density; however, no correlation was found between SGR and density in the slow growing stage (days 3-7). Settlement time was prolonged and shell length of settled larvae decreased as density increased. However, larval survival rate (74.8-79.1%) was independent of stocking density. Results showed that a high stocking density, in the designated range, is feasible for larval culture of the clam M. meretrix. However, for large-scale culture, in the interest of costs and safety, a stocking density of 10-20 larvae ml(-1) is recommended. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of experiments was conducted to evaluate the effects of diet, stocking density, and environmental factors on growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum larvae. These experiments examined the following factors: diet (Isochrysts spp., Chlorella spp., and a mixture of Isochrysis spp. and Chlorella spp. [ 1: 1 w/w]), stocking density (5, 10, 15, and 20 larvae ml(-1)), light intensity (un-shaded, partially shaded, and fully shaded), water filtration (unfiltered and sand-filtered), water exchange (50% and 100% once every other day, 25%, 50%, and 100% once daily; 50% and 100% twice daily), and the use of substrate (with and without sand as the substrate). Results indicated that Chlorella spp. could replace 50% of Isochrysis spp. as a food source for the Manila clam larvae without affecting growth, survival, and metamorphosis. Larval growth decreased significantly with increasing stocking density. A density of 5-10 larvae ml(-1) appeared to be optimal for normal growth of Manila clam larvae. Neither diet nor stocking density used in the study had a significant effect on larval survival. Under partially shaded (light intensity = 1000-5000 lx) and fully shaded (light intensity <500 lx) conditions, larval growth was significantly faster than under direct sunlight (un-shaded). A water exchange rate of 50% twice daily provided optimum larval growth. Larvae grew significantly faster in the unfiltered water than in the sand-filtered water. Using sand as the substrate in the culture system significantly depressed the metamorphosis rate. The type and particle size of sand used as the substrate did not significantly affect growth and metamorphosis rates of the larvae. (C) 2005 Published by Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stock enhancement experiments of European lobster (Homarus gammarus) have been carried out around the Kvitsoy Islands in south-western Norway since 1990. In addition to releases of coded wire tagged lobster juveniles (cultured) and subsequent monitoring of commercial fishery, a lobster hatchery was established in 1997. Several experiments were made on the communal-rearing approach where the performance of mixed larval groups (families) was evaluated under identical conditions. Berried females of wild and cultured origin and their respective fertilised eggs were screened by using microsatellite DNA profiling involving a multiplex set of six lobster specific primers, thereby allowing determination of both parental genotypes. Each female were kept separately during hatching, and the offspring were later mixed and raised in a communal rearing system. The early-larval survival was estimated at stage IV (bottom stage), and the survivors were identified to family and group by microsatellite profiling. Five different communal experiments were conducted, representing offspring from 65 berried females. Of the surviving larvae, 6.3% could not be assigned to family due to degraded DNA and no PCR amplification. Significant differences in early survival between offspring of wild and cultured origin were found in the experiments. No differences between the groups were found in stage IV larval size. Based on the pooled data on survival (as a measure of early larvae fitness) offspring of cultured females displayed a relative fitness of 60% in comparison to offspring from wild females. Large variation in survival was also observed among families within the wild and cultured groups, suggesting a genetic component for these traits and a potential for selective breeding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of methods providing reliable estimates of demographic parameters (e. g., survival rates, fecundity) for wild populations is essential to better understand the ecology and conservation requirements of individual species. A number of methods exist for estimating the demographics of stage-structured populations, but inherent mathematical complexity often limits their uptake by conservation practitioners. Estimating survival rates for pond-breeding amphibians is further complicated by their complex migratory and reproductive behaviours, often resulting in nonobservable states and successive cohorts of eggs and tadpoles. Here we used comprehensive data on 11 distinct breeding toad populations (Bufo calamita) to clarify and assess the suitability of a relatively simple method [the Kiritani-Nakasuji-Manly (KNM) method] to estimate the survival rates of stage-structured populations with overlapping life stages. The study shows that the KNM method is robust and provides realistic estimates of amphibian egg and larval survival rates for species in which breeding can occur as a single pulse or over a period of several weeks. The study also provides estimates of fecundity for seven distinct toad populations and indicates that it is essential to use reliable estimates of fecundity to limit the risk of under- or overestimating the survival rates when using the KNM method. Survival and fecundity rates for B. calamita populations were then used to define population matrices and make a limited exploration of their growth and viability. The findings of the study recently led to the implementation of practical conservation measures at the sites where populations were most vulnerable to extinction. © 2010 The Society of Population Ecology and Springer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lobsters are renowned the world over as tasty delicacies and are in great demand for Epicurian gourests. As a result these animals found in different parts of the world from countries like India they are mostly frozen and exported thus earning considerable foreign exchange for the country. Importance of this crustacean is thus well known and whatever harvested from nature are utilized to the maximum extent. The demand being much more than what is being produced the need for artificial culture becomes evident. In this context a complete knowledge of the lifecycle ,larval biology and their culture is very essential. Thus with the object of studying the life history of the commercially important lobsters fished from Indian waters the larval biology of panulirus homarus has been taken up as the project for the present study

Relevância:

70.00% 70.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.