959 resultados para Large-amplitude oscillatory shear flow
Resumo:
Recent work has focused on deepening our understanding of the molecular origins of the higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. For instance, these higher harmonics have been explained by just considering the orientation distribution of rigid dumbbells suspended in a Newtonian solvent. These dumbbells, when in dilute suspension, form the simplest relevant molecular model of polymer viscoelasticity, and this model specifically neglects interactions between the polymer molecules [R.B. Bird et al., J Chem Phys, 140, 074904 (2014)]. In this paper, we explore these interactions by examining the Curtiss-Bird model, a kinetic molecular theory designed specifically to account for the restricted motions that arise when polymer chains are concentrated, thus interacting and specifically, entangled. We begin our comparison using a heretofore ignored explicit analytical solution [Fan and Bird, JNNFM, 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ε, for which several special cases arise: ε = 0 corresponds to reptation, ε > 1/8 to rod-climbing, 1/2 ≥ ε ≥ 3/4 to reasonable predictions for shear-thinning in steady simple shear flow, and ε = 1 to the dilute solution without hydrodynamic interaction. In this paper, we examine the shapes of the shear stress versus shear rate loops for the special cases ε = (0,1/8, 3/8,1) , and we compare these with those of rigid dumbbell and reptation model predictions.
Resumo:
The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I-3/I-1 shows a power-law behavior with strain amplitude. In addition, I-3/I-1 and the elastic component of stress amplitude sigma(E)(0) show a very prominent maximum at the strain value where the number density (n(v)) of the Taylor vortices is maximum. A subsequent increase in applied strain (gamma) results in the distortions of the vortices and a concomitant decrease in n(v), accompanied by a sharp drop in I-3 and sigma(E)(0). The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of gamma corresponding to the peak of I-3, similar to that observed for hard-sphere glasses.
Resumo:
Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, ¶3, which could be related to shear thinning and shear thickening behaviour.
Resumo:
The subject under investigation concerns the steady surface wave patterns created by small concentrated disturbances acting on a non-uniform flow of a heavy fluid. The initial value problem of a point disturbance in a primary flow having an arbitrary velocity distribution (U(y), 0, 0) in a direction parallel to the undisturbed free surface is formulated. A geometric optics method and the classical integral transformation method are employed as two different methods of solution for this problem. Whenever necessary, the special case of linear shear (i.e. U(y) = 1+ϵy)) is chosen for the purpose of facilitating the final integration of the solution.
The asymptotic form of the solution obtained by the method of integral transforms agrees with the leading terms of the solution obtained by geometric optics when the latter is expanded in powers of small ϵ r.
The overall effect of the shear is to confine the wave field on the downstream side of the disturbance to a region which is smaller than the wave region in the case of uniform flows. If U(y) vanishes, and changes sign at a critical plane y = ycr (e.g. ϵycr = -1 for the case of linear shear), then the boundary of this asymmetric wave field approaches this critical vertical plane. On this boundary the wave crests are all perpendicular to the x-axis, indicating that waves are reflected at this boundary.
Inside the wave field, as in the case of a point disturbance in a uniform primary flow, there exist two wave systems. The loci of constant phases (such as the crests or troughs) of these wave systems are not symmetric with respect to the x-axis. The geometric optics method and the integral transform method yield the same result of these loci for the special case of U(y) = Uo(1 + ϵy) and for large Kr (ϵr ˂˂ 1 ˂˂ Kr).
An expression for the variation of the amplitude of the waves in the wave field is obtained by the integral transform method. This is in the form of an expansion in small ϵr. The zeroth order is identical to the expression for the uniform stream case and is thus not applicable near the boundary of the wave region because it becomes infinite in that neighborhood. Throughout this investigation the viscous terms in the equations of motion are neglected, a reasonable assumption which can be justified when the wavelengths of the resulting waves are sufficiently large.
Resumo:
Douglas, Robert; Cullen, M.J.P., (2002) 'Large-Amplitude nonlinear stability results for atmospheric circulations', The Quarterly Journal of the Royal Meteorological Society 129 pp.1969-1988 RAE2008
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.
Resumo:
A nonequilibrium generalization of the density-functional theory of freezing is proposed to investigate the shear-induced first-order phase transition in colloidal suspensions. It is assumed that the main effect of a steady shear is to break the symmetry of the structure factor of the liquid and that for small shear rate, the phenomenon of a shear-induced order-disorder transition may be viewed as an equilibrium phase transition. The theory predicts that the effective density at which freezing takes place increases with shear rate. The solid (which is assumed to be a bcc lattice) formed upon freezing is distorted and specifically there is less order in one plane compared with the order in the other two perpendicular planes. It is shown that there exists a critical shear rate above which the colloidal liquid does not undergo a transition to an ordered (or partially ordered) state no matter how large the density is. Conversely, above the critical shear rate an initially formed bcc solid always melts into an amorphous or liquidlike state. Several of these predictions are in qualitative agreement with the light-scattering experiments of Ackerson and Clark. The limitations as well as possible extensions of the theory are also discussed.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
We perform numerical experiments to study the shear dynamo problem where we look for the growth of a large-scale magnetic field due to non-helical stirring at small scales in a background linear shear flow in previously unexplored parameter regimes. We demonstrate the large-scale dynamo action in the limit where the fluid Reynolds number (Re) is below unity while the magnetic Reynolds number (Rm) is above unity; the exponential growth rate scales linearly with shear, which is consistent with earlier numerical works. The limit of low Re is particularly interesting, as seeing the dynamo action in this limit would provide enough motivation for further theoretical investigations, which may focus attention on this analytically more tractable limit of Re < 1 compared to the more formidable limit of Re > 1. We also perform simulations in the regimes where (i) both (Re, Rm) < 1, and (ii) Re > 1 and Rm < 1, and compute all of the components of the turbulent transport coefficients (alpha(ij) and alpha(ij)) using the test-field method. A reasonably good agreement is observed between our results and the results of earlier analytical works in similar parameter regimes.
Resumo:
Thermocapillary flow in a rectangular liquid pool of large Prandtl fluid (Pr = 105.6) is numerically studied in microgravity. Oscillatory thermocapillary flow arises when the imposed temperature difference between the sidewalls exceeds a critical value. The fluctuations of the oscillatory flow, accompanied by the propagation of the hydrothermal wave from the cold sidewall to the hot one, are much smaller than the time-averaged velocity and temperature fields. The corresponding disturbance cells arise in the centre of the liquid pool initially, and extend to the whole region with the increasing imposed temperature difference. The present study reveals the different characteristics of the oscillatory themocapillary flow in the rectangular liquid pool as compared to the cases in other configurations.
Resumo:
The dynamic characteristics of slender cable often present serried modes with low frequencies due to large structure flexibility resulted from high aspect ratio (ratio of length to diameter of cable), while the flow velocity distributes non-uniformly along the cable span actually in practical engineering. Therefore, the prediction of the vertex-induce vibration of slender cable suffered from multi-mode and high-mode motions becomes a challenging problem. In this paper a prediction approach based on modal energy is developed to deal with multi-mode lock-in. Then it is applied to the modified wake-oscillator model to predict the VIV displacement and stress responses of cable in non-uniform flow field. At last, illustrative examples are given of which the VIV response of flexible cable in nonlinear shear flow field is analyzed. The effects of flow velocity on VIV are explored. Our results show that both displacement and stress responses become larger as the flow velocity increasing; especially higher stress response companied with higher frequency vibration should be paid enough attention in practical design of SFT because of its remarkable influence on structure fatigue life.