969 resultados para Large Deformation
Resumo:
The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Because no mesh is used, the meshfree methods show good potential for the large deformation analysis. In this paper, a local meshfree formulation, based on the local weak-forms and the updated Lagrangian (UL) approach, is developed for the large deformation analysis. To fully employ the advantages of meshfree methods, a simple and effective adaptive technique is proposed, and this procedure is much easier than the re-meshing in FEM. Numerical examples of large deformation analysis are presented to demonstrate the effectiveness of the newly developed nonlinear meshfree approach. It has been found that the developed meshfree technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming.
Resumo:
To accurately and effectively simulate large deformation is one of the major challenges in numerical modeling of metal forming. In this paper, an adaptive local meshless formulation based on the meshless shape functions and the local weak-form is developed for the large deformation analysis. Total Lagrangian (TL) and the Updated Lagrangian (UL) approaches are used and thoroughly compared each other in computational efficiency and accuracy. It has been found that the developed meshless technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming. In addition, the TL has better computational efficiency than the UL. However, the adaptive analysis is much more efficient using the UL approach than using in the TL approach.
Resumo:
A 48 d.o.f., four-noded quadrilateral laminated composite shell finite element is particularised to a sector finite element and is used for the large deformation analysis of circular composite laminated plates. The strain-displacement relationships for the sector element are obtained by reducing those of the quadrilateral shell finite element by substituting proper values for the geometric parameters. Subsequently, the linear and tangent stiffness matrices are formulated using conventional methods. The Newton-Raphson method is employed as the nonlinear solution technique. The computer code developed is validated by solving an isotropic case for which results are available in the literature. The method is then applied to solve problems of cylindrically orthotropic circular plates. Some of the results of cylindrically orthotropic case are compared with those available in the literature. Subsequently, application is made to the case of laminated composite circular plates having different lay-up schemes. The computer code can handle symmetric/unsymmetric lay-up schemes. The large displacement analysis is useful in estimating the damage in composite plates caused by low-velocity impact.
Resumo:
A new C-0 composite plate finite element based on Reddy's third order theory is used for large deformation dynamic analysis of delaminated composite plates. The inter-laminar contact is modeled with an augmented Lagrangian approach. Numerical results show that the widely used ``unconditionally stable'' beta-Newmark method presents instability problems in the transient simulation of delaminated composite plate structures with large deformation. To overcome this instability issue, an energy and momentum conserving composite implicit time integration scheme presented by Bathe and Baig is used. It is found that a proper selection of the penalty parameter is very crucial in the contact simulation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
Three large deformation rheological tests, the Kieffer dough extensibility system, the D/R dough inflation system and the 2 g mixograph test, were carried out on doughs made from a large number of winter wheat lines and cultivars grown in Poland. These lines and cultivars represented a broad spread in baking performance in order to assess their suitability as predictors of baking volume. The parameters most closely associated with baking volume were strain hardening index, bubble failure strain, and mixograph bandwidth at 10min. Simple correlations with baking volume indicate that bubble failure strain and strain hardening index give the highest correlations, whilst the use of best subsets regression, which selects the best combination of parameters, gave increased correlations with R-2 = 0.865 for dough inflation parameters, R-2 = 0. 842 for Kieffer parameters and R-2 = 0.760 for mixograph parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.
Resumo:
Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed
Resumo:
We have developed a way to represent Mohr-Coulomb failure within a mantle-convection fluid dynamics code. We use a viscous model of deformation with an orthotropic viscoplasticity (a different viscosity is used for pure shear to that used for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation, neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane, which is formally equivalent in any symmetric formulation. We also allow for strain-weakening of the material. The material can remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-integration-point finite element code and show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion. The formulation itself is general and applies to 2- and 3-dimensional problems.
Resumo:
The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling
Resumo:
We present an isogeometric thin shell formulation for multi-patches based on rational splines over hierarchical T-meshes (RHT-splines). Nitsche’s method is employed to efficiently couple the patches. The RHT-splines have the advantages of allowing a computationally feasible local refine- ment, are free from linear independence, possess high order continuity and satisfy the partition of unity and non-negativity, properties. In addition, C 1 continuity of the RHT-splines obviates to use of rotational degrees of freedom. The good performance of the present method is demonstrated by a number of numerical examples.