829 resultados para Landscape Genetics
Resumo:
283 p. : graf., map.
Resumo:
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale.
Resumo:
Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de doutoramento, Biologia (Biologia da Conservação), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
A common approach used to estimate landscape resistance involves comparing correlations of ecological and genetic distances calculated among individuals of a species. However, the location of sampled individuals may contain some degree of spatial uncertainty due to the natural variation of animals moving through their home range or measurement error in plant or animal locations. In this study, we evaluate the ways that spatial uncertainty, landscape characteristics, and genetic stochasticity interact to influence the strength and variability of conclusions about landscape-genetics relationships. We used a neutral landscape model to generate 45 landscapes composed of habitat and non-habitat, varying in percent habitat, aggregation, and structural connectivity (patch cohesion). We created true and alternate locations for 500 individuals, calculated ecological distances (least-cost paths), and simulated genetic distances among individuals. We compared correlations between ecological distances for true and alternate locations. We then simulated genotypes at 15 neutral loci and investigated whether the same influences could be detected in simple Mantel tests and while controlling for the effects of isolation-by distance using the partial Mantel test. Spatial uncertainty interacted with the percentage of habitat in the landscape, but led to only small reductions in correlations. Furthermore, the strongest correlations occurred with low percent habitat, high aggregation, and low to intermediate levels of cohesion. Overall genetic stochasticity was relatively low and was influenced by landscape characteristics.
Resumo:
Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.
Resumo:
Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.
Resumo:
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.
Resumo:
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Resumo:
Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear.Apersistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. © 2013 The Authors.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
La variabilité génétique actuelle est influencée par une combinaison complexe de variables historiques et contemporaines. Dès lors, une interprétation juste de l’impact des processus actuels nécessite une compréhension profonde des processus historiques ayant influencé la variabilité génétique. En se basant sur la prémisse que des populations proches devraient partager une histoire commune récente, nombreuses études, effectuées à petite échelle spatiale, ne prennent pas en considération l’effet potentiel des processus historiques. Cette thèse avait pour but de vérifier la validité de cette prémisse en estimant l’effet de la dispersion historique à grande et à petite échelle spatiale. Le premier volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la répartition des organismes à grande échelle spatiale. Pour ce faire, les moules d’eau douce du genre flotteurs (Pyganodon spp.) ont servies de modèle biologique. Les moules d'eau douce se dispersent principalement au stade larvaire en tant que parasites des poissons. Une série de modèles nuls ont été développés pour évaluer la co-occurrence entre des parasites et leurs hôtes potenitels. Les associations distinctes du flotteur de Terre-Neuve (P. fragilis) avec des espèces de poissons euryhalins permettent d’expliquer sa répartition. Ces associations distinctes ont également pu favoriser la différenciation entre le flotteur de Terre-Neuve et son taxon soeur : le flotteur de l’Est (P. cataracta). Cette étude a démontré les effets des associations biologiques historiques sur les répartitions à grande échelle spatiale. Le second volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la variabilité génétique, à petite échelle spatiale. Cette fois, différentes populations de crapet de roche (Ambloplites rupestris) et de crapet soleil (Lepomis gibbosus), dans des drainages adjacents ont servies de modèle biologique. Les différences frappantes observées entre les deux espèces suggèrent des patrons de colonisation opposés. La faible diversité génétique observée en amont des drainages et la forte différenciation observée entre les drainages pour les populations de crapet de roche suggèrent que cette espèce aurait colonisé les drainages à partir d'une source en aval. Au contraire, la faible différenciation et la forte diversité génétique observées en amont des drainages pour les populations de crapet soleil suggèrent une colonisation depuis l’amont, induisant du même coup un faux signal de flux génique entre les drainages. La présente étude a démontré que la dispersion historique peut entraver la capacité d'estimer la connectivité actuelle, à petite échelle spatiale, invalidant ainsi la prémisse testée dans cette thèse. Les impacts des processus historiques sur la variabilité génétique ne sont pas faciles à démontrer. Le troisième volet de cette thèse avait pour but de développer une méthode permettant de les détecter. La méthode proposée est très souple et favorise la comparaison entre la variabilité génétique et plusieurs hypothèses de dispersion. La méthode pourrait donc être utilisée pour comparer des hypothèses de dispersion basées sur le paysage historique et sur le paysage actuel et ainsi permettre l’évaluation des impacts historiques et contemporains sur la variabilité génétique. Les performances de la méthode sont présentées pour plusieurs scénarios de simulations, d’une complexité croissante. Malgré un impact de la différentiation globale, du nombre d’individus ou du nombre de loci échantillonné, la méthode apparaît hautement efficace. Afin d’illustrer le potentiel de la méthode, deux jeux de données empiriques très contrastés, publiés précédemment, ont été ré analysés. Cette thèse a démontré les impacts de la dispersion historique sur la variabilité génétique à différentes échelles spatiales. Les effets historiques potentiels doivent être pris en considération avant d’évaluer les impacts des processus écologiques sur la variabilité génétique. Bref, il faut intégrer l’évolution à l’écologie.
Resumo:
The phylogeography of South American lineages is a topic of heated debate. Although a single process is unlikely to describe entire ecosystems, related species, which incur similar habitat limitations, can inform the history for a subsection of assemblages. We compared the phylogeographic patterns of the cytochrome oxidase I marker from Anopheles triannulatus (N = 72) and previous results for A. darlingi (N = 126) in a broad portion of their South American distributions. Both species share similar population subdivisions, with aggregations northeast of the Amazon River, in southern coastal Brazil and 2 regions in central Brazil. The average (ST) between these groups was 0.39 for A. triannulatus. Populations northeast of the Amazon and in southeastern Brazil are generally reciprocally monophyletic to the remaining groups. Based on these initial analyses, we constructed the a priori hypothesis that the Amazon and regions of high declivity pose geographic barriers to dispersal in these taxa. Mantel tests confirmed that these areas block gene flow for more than 1000 km for both species. The efficacy of these impediments was tested using landscape genetics, which could not reject our a priori hypothesis but did reject simpler scenarios. Results form summary statistics and phylogenetics suggest that both lineages originated in central Amazonia (south of the Amazon River) during the late Pleistocene (579 000 years ago) and that they followed the same paths of expansion into their contemporary distributions. These results may have implications for other species sharing similar ecological limitations but probably are not applicable as a general paradigm of Neotropical biogeography.