981 resultados para Landsat Thematic Mapper
Resumo:
The present study investigates the spatial and spectral discrimination potential for grassland patches in the inner Turku Archipelago using Landsat Thematic Mapper satellite imagery. The spatial discrimination potential was computed through overlay analysis using official grassland parcel data and a hypothetical 30 m resolution satellite image capturing the site. It found that Landsat TM imagery’s ability to retrieve pure or near-pure pixels (90% purity or more) from grassland patches smaller than 1 hectare was limited to 13% success, compared to 52% success when upscaling the resolution to 10 x 10 m pixel size. Additionally, the perimeter/area patch metric is proposed as a predictor for the suitability of the spatial resolution of input imagery. Regression analysis showed that there is a strong negative correlation between a patch’s perimeter/area ratio and its pure pixel potential. The study goes on to characterise the spectral response and discrimination potential for the five main grassland types occurring in the study area: recreational grassland, traditional pasture, modern pasture, fodder production grassland and overgrown grassland. This was done through the construction of spectral response curves, a coincident spectral plot and a contingency matrix as well as by calculating the transformed divergence for the spectral signatures, all based on training samples from the TM imagery. Substantial differences in spectral discrimination potential between imagery from the beginning of the growing season and the middle of summer were found. This is because the spectral responses for these five grassland types converge as the peak of the growing season draws nearer. Recreational grassland shows a consistent discrimination advantage over other grassland types, whereas modern pasture is most easily confused. Traditional pasture land, perhaps the most biologically valuable grassland type, can be spectrally discriminated from other grassland types with satisfactory success rates provided early growing season imagery is used.
Resumo:
"September 1991."
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multitemporal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to assess coastline morphological changes in southeastern Brazil. A spectral linear mixing approach (SLMA) was used to estimate fraction imagery representing amounts of vegetation, clean water (a proxy for shade) and soil. Fraction abundances were related to erosive and depositional features. Shoreline, sandy banks (including emerged and submerged banks) and sand spits were highlighted mainly by clean water and soil fraction imagery. To evaluate changes in the coastline geomorphic features, the fraction imagery generated for each data set was classified in a contextual approach using a segmentation technique and ISOSEG, an unsupervised classification. Evaluation of the classifications was performed visually and by an error matrix relating ground-truth data to classification results. Comparison of the classification results revealed an intense transformation in the coastline, and that erosive and depositional features are extremely dynamic and subject to change in short periods of time.
Resumo:
This work aims to analyze the land use evolution in the city of Santa Cruz do Rio Pardo - SP through supervised classification of Landsat-5 TM satellite images according to the maximum likelihood (Maxlike), as well as verifying the mapping accuracy through Kappa index, comparing NDVI and SAVI vegetation indexes in different adjustment factors for the canopy substrate and determining the vegetal coverage percentage in all methods used on 2007, May 26 th; 2009, January 7 th and 2009, April 29 th. The Maxlike classification showed several spatial changes in land use over the study period. The most appropriated vegetation indexes were NDVI and SAVI - 0,25 factor, which showed similar values of vegetal coverage percentage, but discrepant from the inferred value for Maxlike classification.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest plantations, which have recently attracted much attention as a result of their high expansion rate in many tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the age of the stands) estimated from these time series with real values provided by the company showed that the root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability and 87% of stand dominant height variability. Age variables were combined with other variables derived from the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest) regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height, and an accuracy of about 25 m(3)/ha for volume (15% of the volume average value) and about 1.6 m for dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated over the two first years after planting, which are critical for stand establishment. These results open perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation forests. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The reflectance signatures of plantation pine canopy and understorey components were measured using a spectro-radiometer. The aim was to establish whether differences observed in the reflectance signature of stressed and unstressed pine needles were consistent with observed differences in the reflectance of multispectral Landsat Thematic Mapper (TM) images of healthy and stressed forest. Because overall scene reflectance includes the contribution of each scene component, needle reflectance may not be representative of canopy reflectance. In this investigation, a limited dataset of reflectance signatures from stressed and unstressed needles confirmed the negative relationship between pine needle health and reflectance which was observed in visible red wavelengths. However, the reflectance contribution from bushes, pine needle litter and bare soil tended to reinforce this relationship suggesting that in this instance, overall scene reflectance is comprised of the proportional reflectance of each scene component. In near infrared wavelengths, differences between healthy and stressed needle reflectance suggested a strong positive relationship between reflectance and tree health. For Landsat TM images, previous research had only observed a weak positive relationship between stand health and near infrared reflectance in these pine canopies. This suggests that for multispectral Landsat TM images, reflectance of near infrared light from pine canopies may be affected by other factors which may include the scattering of light within canopies. These results are seen as promising for the use of hyperspectral images to detect stand health, provided that pixel reflectance is not influenced by other scene components.
Resumo:
Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.
Resumo:
The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
Accurate habitat mapping is critical to landscape ecological studies such as required for developing and testing Montreal Process indicator 1.1e, fragmentation of forest types. This task poses a major challenge to remote sensing, especially in mixedspecies, variable-age forests such as dry eucalypt forests of subtropical eastern Australia. In this paper, we apply an innovative approach that uses a small section of one-metre resolution airborne data to calibrate a moderate spatial resolution model (30 m resolution; scale 1:50 000) based on Landsat Thematic Mapper data to estimate canopy structural properties in St Marys State Forest, near Maryborough, south-eastern Queensland. The approach applies an image-processing model that assumes each image pixel is significantly larger than individual tree crowns and gaps to estimate crown-cover percentage, stem density and mean crown diameter. These parameters were classified into three discrete habitat classes to match the ecology of four exudivorous arboreal species (yellowbellied glider Petaurus australis, sugar glider P. breviceps, squirrel glider P. norfolcensis , and feathertail glider Acrobates pygmaeus), and one folivorous arboreal marsupial, the greater glider Petauroides volans. These species were targeted due to the known ecological preference for old trees with hollows, and differences in their home range requirements. The overall mapping accuracy, visually assessed against transects (n = 93) interpreted from a digital orthophoto and validated in the field, was 79% (KHAT statistic = 0.72). The KHAT statistic serves as an indicator of the extent that the percentage correct values of the error matrix are due to ‘true’ agreement verses ‘chance’ agreement. This means that we are able to reliably report on the effect of habitat loss on target species, especially those with a large home range size (e.g. yellow-bellied glider). However, the classified habitat map failed to accurately capture the spatial patterning (e.g. patch size and shape) of stands with a trace or sub-dominance of senescent trees. This outcome makes the reporting of the effects of habitat fragmentation more problematic, especially for species with a small home range size (e.g. feathertail glider). With further model refinement and validation, however, this moderateresolution approach offers an important, cost eff e c t i v e advancement in mapping the age of dry eucalypt forests in the region.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.