985 resultados para Landsat Satellite Images


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land cover changes over time as a result of human activity. Nowadays deforestation may be considered one of the main environmental problems. The objective of this study was to identify and characterize changes to forest cover in Venezuela between 2005-2010. Two maps of deforestation hot spots were generated on the basis of MODIS data, one using digital techniques and the other by means of direct visual interpretation by experts. These maps were validated against Landsat ETM+ images. The accuracy of the map obtained digitally was estimated by means of a confusion matrix. The overall accuracy of the maps obtained digitally was 92.5%. Expert opinions regarding the hot spots permitted the causes of deforestation to be identified. The main processes of deforestation were concentrated to the north of the Orinoco River, where 8.63% of the country's forests are located. In this region, some places registered an average annual forest change rate of between 0.72% and 2.95%, above the forest change rate for the country as a whole (0.61%). The main causes of deforestation for the period evaluated were agricultural and livestock activities (47.9%), particularly family subsistence farming and extensive farming which were carried out in 94% of the identified areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiometric changes observed in multi-temporal optical satellite images have an important role in efforts to characterize selective-logging areas. The aim of this study was to analyze the multi-temporal behavior of spectral-mixture responses in satellite images in simulated selective-logging areas in the Amazon forest, considering red/near-infrared spectral relationships. Forest edges were used to infer the selective-logging infrastructure using differently oriented edges in the transition between forest and deforested areas in satellite images. TM/Landsat-5 images acquired at three dates with different solar-illumination geometries were used in this analysis. The method assumed that the radiometric responses between forest with selective-logging effects and forest edges in contact with recent clear-cuts are related. The spatial frequency attributes of red/near infrared bands for edge areas were analyzed. Analysis of dispersion diagrams showed two groups of pixels that represent selective-logging areas. The attributes for size and radiometric distance representing these two groups were related to solar-elevation angle. The results suggest that detection of timber exploitation areas is limited because of the complexity of the selective-logging radiometric response. Thus, the accuracy of detecting selective logging can be influenced by the solar-elevation angle at the time of image acquisition. We conclude that images with lower solar-elevation angles are less reliable for delineation of selecting logging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reservoirs are artificial environments built by humans, and the impacts of these environments are not completely known. Retention time and high nutrient availability in the water increases the eutrophic level. Eutrophication is directly correlated to primary productivity by phytoplankton. These organisms have an important role in the environment. However, high concentrations of determined species can lead to public health problems. Species of cyanobacteria produce toxins that in determined concentrations can cause serious diseases in the liver and nervous system, which could lead to death. Phytoplankton has photoactive pigments that can be used to identify these toxins. Thus, remote sensing data is a viable alternative for mapping these pigments, and consequently, the trophic. Chlorophyll-a (Chl-a) is present in all phytoplankton species. Therefore, the aim of this work was to evaluate the performance of images of the sensor Operational Land Imager (OLI) onboard the Landsat-8 satellite in determining Chl-a concentrations and estimating the trophic level in a tropical reservoir. Empirical models were fitted using data from two field surveys conducted in May and October 2014 (Austral Autumn and Austral Spring, respectively). Models were applied in a temporal series of OLI images from May 2013 to October 2014. The estimated Chl-a concentration was used to classify the trophic level from a trophic state index that adopted the concentration of this pigment-like parameter. The models of Chl-a concentration showed reasonable results, but their performance was likely impaired by the atmospheric correction. Consequently, the trophic level classification also did not obtain better results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urbanization refers to the process in which an increasing proportion of a population lives in cities and suburbs. Urbanization fuels the alteration of the Land use/Land cover pattern of the region including increase in built-up area, leading to imperviousness of the ground surface. With increasing urbanization and population pressures; the impervious areas in the cities are increasing fast. An impervious surface refers to an anthropogenic ally modified surface that prevents water from infiltrating into the soil. Surface imperviousness mapping is important for the studies related to water cycling, water quality, soil erosion, flood water drainage, non-point source pollution, urban heat island effect and urban hydrology. The present study estimates the Total Impervious Area (TIA) of the city of Kochi using high resolution satellite image (LISS IV, 5m. resolution). Additionally the study maps the Effective Impervious Area (EIA) by coupling the capabilities of GIS and Remote Sensing. Land use/Land cover map of the study area was prepared from the LISS IV image acquired for the year 2012. The classes were merged to prepare a map showing pervious and impervious area. Supervised Maximum Likelihood Classification (Supervised MLC),which is a simple but accurate method for image classification, is used in calculating TIA and an overall classification accuracy of 86.33% was obtained. Water bodies are 100% pervious, whereas urban built up area are 100% impervious. Further based on percentage of imperviousness, the Total Impervious Area is categorized into various classes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer program, PhotoLin, written for an IBM-PC-compatible microcomputer is described which detects linear features in aerial photographs, satellite images and topographic maps. The program accepts images saved to PCX files as input and applies noise correction and smoothing filters and thinning routines. The output consists of a skeleton containing the median lines of linear features which can be represented on a map. The branches of the skeleton can be broken into sections of constant length for which the mean orientations are obtained for the preparation of rose diagrams. (C) 2001 Elsevier B.V. Ltd. All rights reserved.