997 resultados para Lamivudine Treatment
Resumo:
Lamivudine has been demonstrated safe and efficacious in the short term in a large cohort of children with chronic hepatitis B (CHB), but optimal duration of treatment has not been elucidated and limited data on the safety of long-term lamivudine administration have been reported. In addition, the durability of favourable therapeutic outcomes after lamivudine therapy in children has not been well characterized. The aim of this study was to examine the safety of lamivudine and the durability of clinical responses in a group of children who received up to 3 years of treatment for CHB. One hundred and fifty-one children from centres in nine countries who had previously received lamivudine in a large prospective trial were enrolled. During the first year, children had been randomized to either lamivudine or placebo treatment. Subsequently, in a separate extension study, those who remained hepatitis B e antigen (HBeAg) positive were given lamivudine for up to 2 years and those who were HBeAg negative were observed for additional 2 years. Results of these studies have been previously reported. In this study, these children were followed for 2 additional years. Data gathered from medical record review included weight, height, signs and symptoms of hepatitis, alanine aminotransferase (ALT) levels, serologic markers, hepatitis B virus (HBV) DNA levels and serious adverse events (SAEs). Other pharmacological treatments for CHB were allowed according to the practices of individual investigators and were documented. Subjects were divided into two groups for analysis, those who had achieved virological response (VR), defined as HBeAg negative and undetectable HBV DNA by the bDNA assay by the end of the extension study at 3 years, and those who had not. In those who had achieved VR by the end of the extension study, long-term durability of HBeAg seroconversion was 82% and >90% in those who had received lamivudine for 52 weeks and at least 2 years respectively. This compares to 75% for those who had achieved seroconversion after placebo. In those who had not achieved VR by the end of the extension study, an additional 11% did so by the end of the study; they had all received lamivudine in the previous trial, and none had received further treatment during the study. Eight children lost hepatitis B surface antigen during the study and all had received lamivudine at some point during the previous trials. Evaluation of safety data revealed no SAEs related to lamivudine. There was no effect of treatment on weight or height z scores. Clinically benign ALT flares (>10 times normal) were seen in 2% of children. Favourable outcomes from lamivudine treatment of CHB in children are maintained for at least several years after completion of treatment. Up to 3 years of lamivudine treatment is safe in children.
Resumo:
INTRODUCTION: Lamivudine is a nucleoside analogue that is used clinically for treating chronic hepatitis B infection. However, the main problem with prolonged use of lamivudine is the development of viral resistance to the treatment. Mutations in the YMDD motif of the hepatitis B virus DNA polymerase gene have been associated with resistance to drug therapy. So far, there have not been many studies in Brazil reporting on genotype-dependent development of resistance to lamivudine. Thus, the aim of the present study was to determine the possible correlation between a certain genotype and increased development of resistance to lamivudine among chronic hepatitis B patients. METHODS: HBV DNA in samples from 50 patients under lamivudine treatment was amplified by means of conventional PCR. Samples were collected at Hospital das Clínicas, FMRP-USP. The products were then sequenced and phylogenetic analysis was performed. RESULTS: Phylogenetic analysis revealed that 29 (58%) patients were infected with genotype D, 20 (40%) with genotype A and one (2%) with genotype F. Mutations in the YMDD motif occurred in 20% of the patients with genotype A and 27.6% of the patients with genotype D. CONCLUSIONS: Despite the small number of samples, our results indicated that mutations in the YMDD motif were 1.38 times more frequent in genotype D than in genotype A.
Resumo:
Background: Prolonged use of lamivudine in patients coinfected with HIV and hepatitis B virus (HBV) leads to an increasing risk of lamivudine resistance in both diseases. We investigated the addition of entecavir, a potent inhibitor of HBV polymerase, to lamivudine-containing highly active antiretroviral therapy (HAART) in patients who experienced rebound in HBV viremia while maintaining Suppression of plasma HIV RNA less than 400 copies/ml. Methods: Sixty-eight patients were randomized to entecavir 1 mg (n = 51) or placebo (n = 17) once daily for 24 weeks; 65 patients continued the study with entecavir for an additional 24 weeks. Lamivudine-containing HAART was continued throughout. Results: At week 24, the mean HBV DNA in entecavir-treated patients was 5.52 log(10) - copies/ml versus 9.27 log(10) copies/ml for placebo, and at week 48, it was 4.79log(10) copies/ml versus 5.63log(10) copies/ml, respectively. The mean HBV DNA change from baseline for entecavir was -3.65 log(10) copies/ml (versus + 0.11 for placebo, P < 0.0001) and alanine aminotransferase normalization in 34%. of patients (versus 8% for placebo, P=0.08)At 48 weeks, mean change in HBV DNA reached -4.20log(10) copies/ml inpatients who received entecavir for the entire 48 weeks. The frequency of adverse events with entecavir and placebo was comparable. Through 48 weeks, no clinically relevant changes in HIV viremia or CD4 cell Counts were identified. Conclusion: In this study, entecavir was associated with rapid, clinically significant reductions in HBV DNA, with maintenance of HIV viremia suppression, in HIV/HBV coinfected patients with HBV viremia while on lamivudine treatment. (C) 2008 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Hepatitis B virus (HBV) molecular profiles were determined for 44 patients who were infected with human immunodeficiency virus (HIV) type 1 and had antibodies to the hepatitis B core antigen (anti-HBc), with and without other HBV serological markers. In this population, 70% of the patients were under lamivudine treatment as a component of antiretroviral therapy. HBV DNA was detected in 14 (32%) patients. Eight out of 12 (67%) HBsAg positive samples, 3/10 (30%) anti-HBc only samples, and 3/22 (14%) anti-HBs positive samples were HBV DNA positive. HBV DNA loads, measured by real time polymerase chain reaction, were much higher in the HBsAg positive patients (mean, 2.5 × 10(9) copies/ml) than in the negative ones (HBV occult infection; mean, 2.7 × 10(5) copies/ml). Nine out of the 14 HBV DNA positive patients were under lamivudine treatment. Lamivudine resistant mutations in the polymerase gene were detected in only three patients, all of them belonging to the subgroup of five HBsAg positive, HBV DNA positive patients. A low mean HBV load (2.7 × 10(5) copies/ml) and an absence of lamivudine resistant mutations were observed among the cases of HBV occult infection.
Resumo:
BACKGROUND: Hepatitis B virus (HBV) genotypes can influence treatment outcome in HBV-monoinfected and human immunodeficiency virus (HIV)/HBV-coinfected patients. Tenofovir disoproxil fumarate (TDF) plays a pivotal role in antiretroviral therapy (ART) of HIV/HBV-coinfected patients. The influence of HBV genotypes on the response to antiviral drugs, particularly TDF, is poorly understood. METHODS: HIV/HBV-co-infected participants with detectable HBV DNA prior to TDF therapy were selected from the Swiss HIV Cohort Study. HBV genotypes were identified and resistance testing was performed prior to antiviral therapy, and in patients with delayed treatment response (>6 months). The efficacy of TDF to suppress HBV (HBV DNA <20 IU/mL) and the influence of HBV genotypes were determined. RESULTS: 143 HIV/HBV-coinfected participants with detectable HBV DNA were identified. The predominant HBV genotypes were A (82 patients, 57 %); and D (35 patients, 24 %); 20 patients (14 %) were infected with multiple genotypes (3 % A + D and 11 % A + G); and genotypes B, C and E were each present in two patients (1 %). TDF completely suppressed HBV DNA in 131 patients (92 %) within 6 months; and in 12 patients (8 %), HBV DNA suppression was delayed. No HBV resistance mutations to TDF were found in patients with delayed response, but all were infected with HBV genotype A (among these, 5 patients with genotype A + G), and all had previously been exposed to lamivudine. CONCLUSION: In HIV/HBV-coinfected patients, infection with multiple HBV genotypes was more frequent than previously reported. The large majority of patients had an undetectable HBV viral load at six months of TDF-containing ART. In patients without viral suppression, no TDF-related resistance mutations were found. The role of specific genotypes and prior lamivudine treatment in the delayed response to TDF warrant further investigation.
Resumo:
BACKGROUND Hepatitis B virus (HBV) genotypes can influence treatment outcome in HBV-monoinfected and human immunodeficiency virus (HIV)/HBV-coinfected patients. Tenofovir disoproxil fumarate (TDF) plays a pivotal role in antiretroviral therapy (ART) of HIV/HBV-coinfected patients. The influence of HBV genotypes on the response to antiviral drugs, particularly TDF, is poorly understood. METHODS HIV/HBV-co-infected participants with detectable HBV DNA prior to TDF therapy were selected from the Swiss HIV Cohort Study. HBV genotypes were identified and resistance testing was performed prior to antiviral therapy, and in patients with delayed treatment response (>6 months). The efficacy of TDF to suppress HBV (HBV DNA <20 IU/mL) and the influence of HBV genotypes were determined. RESULTS 143 HIV/HBV-coinfected participants with detectable HBV DNA were identified. The predominant HBV genotypes were A (82 patients, 57 %); and D (35 patients, 24 %); 20 patients (14 %) were infected with multiple genotypes (3 % A + D and 11 % A + G); and genotypes B, C and E were each present in two patients (1 %). TDF completely suppressed HBV DNA in 131 patients (92 %) within 6 months; and in 12 patients (8 %), HBV DNA suppression was delayed. No HBV resistance mutations to TDF were found in patients with delayed response, but all were infected with HBV genotype A (among these, 5 patients with genotype A + G), and all had previously been exposed to lamivudine. CONCLUSION In HIV/HBV-coinfected patients, infection with multiple HBV genotypes was more frequent than previously reported. The large majority of patients had an undetectable HBV viral load at six months of TDF-containing ART. In patients without viral suppression, no TDF-related resistance mutations were found. The role of specific genotypes and prior lamivudine treatment in the delayed response to TDF warrant further investigation.
Resumo:
The Highly Active Antiretroviral Therapy (HAART) is the combination of at least three antiretroviral compounds. The combination purpose is to reduce the likelihood of drug resistance. However in the long-term the resistance to the first-line combination occurs and leads to treatment failure. Thus, a second-line and even a third-line regimen are recommended in the long run. [...] [P. 5] The two treatment alternatives under comparison: Tenofovir (300 mg) CO-formulated with Emtricitabine (200 mg) and Efavirenz (600 mg) currently known under the brand name Atripla (R) was introduced in July 2006 in the United States market. The excellent safety profile and ease of use make this combination a perfect first-line regimen in low-income settings. Therefore, this treatment option was recommended in WHO 2006 reviewed guidelines. Unfortunately, Tenofovir and Emtricitabine compounds are still costly and not yet widely available. For a matter of simplification this regimen is referred in this report as "the recent" therapy. Initially, we had in mind to consider the most frequently used first-line regimen in low-income countries (Stavudine / Larnivudme / Nevirapine) as a comparator for this economic evaluation. Unfortunately, according to the literature review results (see Annex 3); there was no data available comparing head to head the effectiveness of this regimen with the recent one. Instead, we selected a less frequently but commonly used first-line regimen in low-income countries as a comparator: Zidovudine, Lamivudine, Efavirenz. This combination has extensive experience in durability, safety and toxicity and seems to be an optimal choice for a first-line regimen according to the clinical trial group 384 team. Furthermore, Zidovudine, one of the compounds of this combination is now recommended as one of the preferred NNRTI [Non Nucleoside Reverse Transcriptase Inhibitors] options to be considered by countries instead of Stavudine (the most used NNRTI in limited-income countries). As this combination has been included in the WHO guidelines as a first-line therapy since 2003 when WHO launched the "3 by 5" scaling-up initiative, this combination of drugs is referred in this report as the "old" therapy. Objectives: The primary objective of this economic evaluation is to compare the two first-line HAARTs introduced above, in a low-income setting context. Both of these combinations are recommended by the 2006 WHO guidelines as potential first-line regimens. The secondary objective is to provide a simplified and comprehensible cost-effectiveness modeling tool in order to help policy makers, in resource-limited settings, make decisions about which first-line HAART to fund using the scarce resources available. [P. 6-7]
Resumo:
Background and aims: Seroclearance or seroconversion of hepatitis B surface antigen (HBsAg) is generally considered as a clinical endpoint. The purpose of the present meta-analysis was to evaluate the effect of combined therapy with pegylated interferon alpha (PEG-IFNα) with or without lamivudine (LAM) or adefovir (ADV) on HBsAg seroclearance or seroconversion in subjects with chronic hepatitis B (CHB). Methods: Randomized controlled trials performed through May 30th 2015 in adults with CHB receiving PEG-IFNα and LAM or ADV combination therapy or monotherapy for 48-52 weeks were included. The Review Manager Software 5.2.0 was used for the meta-analysis. Results: No statistical differences in HBsAg seroclearance (9.9% vs. 7.1%, OR = 1.47, 95% CI: 0.75, 2.90; p = 0.26) or HBsAg seroconversion (4.2% vs. 3.7%, OR = 1.17, 95% CI: 0.57, 2.37; p = 0.67) rates were noticed between PEG-IFNα + LAM and PEG-IFN α + placebo during post-treatment follow-up for 24-26-weeks in subjects with hepatitis Be antigen (HBeAg)-positive CHB. No statistical differences in HBsAg clearance (10.5% vs. 6.4%, OR = 1.68, 95% CI: 0.75, 3.76; p = 0.21) were seen, but statistical differences in HBsAg seroconversion (6.3% vs. 0%, OR = 7.22, 95% CI: 1.23, 42.40; p = 0.03) were observed, between PEG-IFNα + ADV and PEG-IFNα for 48-52 weeks of treatment in subjects with HBeAg-positive CHB. A systematic evaluation showed no differences in HBsAg disappearance and seroconversion rates between PEG-IFNα + placebo and PEG-IFNα + LAM for 48-52 weeks in subjects with HBeAg-positive CHB. A systematic assessment found no differences in HBsAg disappearance and seroconversion rates between PEG-IFNα + placebo and PEG-IFNα + LAM during 24 weeks' to 3 years' follow-up after treatment in subjects with HBeAg-negative CHB. Conclusion: Combined therapy with PEG-IFNα and LAM or ADV was not superior to monotherapy with PEG-IFNα in terms of HBsAg seroclearance or seroconversion.
Resumo:
Sustained virologic suppression is a primary goal of therapy for chronic hepatitis B (CHB). In study entecavir (ETV)-022, 48 weeks of entecavir 0.5 mg was superior to lamivudine for virologic suppression for hepatitis B e antigen (HBeAg)-positive CHB. A total of 183 entecavir-treated patients from ETV-022 subsequently enrolled in study ETV-901. We present the results after up to 5 years (240 weeks) of continuous entecavir therapy. The entecavir long-term cohort consists of patients who received >= 1 year of entecavir 0.5 mg in ETV-022 and then entered ETV-901 with a treatment gap <= 35 days. In ETV-901 the entecavir dose was 1.0 mg daily. For patients with samples available at Year 5, proportions with hepatitis B virus (HBV) DNA <300 copies/mL, normal alanine aminotransferase (ALT) levels, HBeAg loss, and HBeAg seroconversion were determined. In all, 146 patients met criteria for inclusion in the entecavir long-term cohort. At Year 5, 94% (88/94) had HBV DNA <300 copies/mL and 80% (78/98) had normal ALT levels. In addition to patients who achieved serologic responses during study ETV-022, 23% (33/141) achieved HBeAg seroconversion and 1.4% (2/145) lost hepatitis B surface antigen (HBsAg) during study ETV-901. Through 5 years, entecavir resistance emerged in one patient. The safety profile of entecavir was consistent with previous reports. Conclusion: Extended therapy with entecavir through 5 years maintained or increased rates of HBV DNA suppression and ALT normalization. Additional patients also achieved HBeAg loss and seroconversion. Entecavir provides sustained viral suppression with minimal resistance during long-term treatment of HBeAg-positive CHB. (HEPATOLOGY 2010;51:422-430.)
Resumo:
BACKGROUND: Lamivudine has been shown to be an efficient drug for chronic hepatitis B (CHB) treatment. AIM: To investigate predictive factors of response, using a quantitative method with high sensitivity. METHODS: We carried out a prospective trial of lamivudine in 35 patients with CHB and evidence for viral replication, regardless to their HBeAg status. Lamivudine was given for 12 months at 300 mg daily and 150 mg thereafter. Response was considered when DNA was undetectable by PCR after 6 months of treatment. Viral replication was monitored by end-point dilution PCR. Mutation associated with resistance to lamivudine was detected by DNA sequencing in non-responder patients. RESULTS: Response was observed in 23/35 patients (65.7%) but only in 5/15 (33.3%) HBeAg positive patients. Only three pre-treatment variables were associated to low response: HBeAg (p = 0.006), high viral load (DNA-VHB > 3 x 10(6) copies/ml) (p = 0.004) and liver HBcAg (p = 0.0028). YMDD mutations were detected in 7/11 non-responder patients. CONCLUSIONS: HBeAg positive patients with high viral load show a high risk for developing drug resistance. On the other hand, HBeAg negative patients show a good response to lamivudine even with high viremia.
Resumo:
INTRODUCTION: Since the emergence of antiretroviral therapy, the survival of patients infected with human immunodeficiency virus has increased. Non-adherence to this therapy is directly related to treatment failure, which allows the emergence of resistant viral strains. METHODS: A retrospective descriptive study of the antiretroviral dispensing records of 229 patients from the Center for Health Care, University Hospital, Federal University of Juiz de Fora, Brazil, was conducted between January and December 2009. RESULTS: The study aimed to evaluate patient compliance and determine if there was an association between non-adherence and the therapy. Among these patients, 63.8% were men with an average age of 44.0 ± 9.9 years. The most used treatment was a combination of 2 nucleoside reverse transcriptase inhibitors with 1 non-nucleoside reverse transcriptase inhibitor (55.5%) or with 2 protease inhibitors (28.8%). It was found that patients taking lopinavir/ritonavir with zidovudine and lamivudine had a greater frequency of inadequate treatment than those taking atazanavir with zidovudine and lamivudine (85% and 83.3%, respectively). Moreover, when the combination of zidovudine/ lamivudine was used, the patients were less compliant (χ2 = 4.468, 1 degree of freedom, p = 0.035). CONCLUSIONS: The majority of patients failed to correctly adhere to their treatment; therefore, it is necessary to implement strategies that lead to improved compliance, thus ensuring therapeutic efficacy and increased patient survival.
Resumo:
CONTEXT: New trial data and drug regimens that have become available in the last 2 years warrant an update to guidelines for antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected adults in resource-rich settings. OBJECTIVE: To provide current recommendations for the treatment of adult HIV infection with ART and use of laboratory-monitoring tools. Guidelines include when to start therapy and with what drugs, monitoring for response and toxic effects, special considerations in therapy, and managing antiretroviral failure. DATA SOURCES, STUDY SELECTION, AND DATA EXTRACTION: Data that had been published or presented in abstract form at scientific conferences in the past 2 years were systematically searched and reviewed by an International Antiviral Society-USA panel. The panel reviewed available evidence and formed recommendations by full panel consensus. DATA SYNTHESIS: Treatment is recommended for all adults with HIV infection; the strength of the recommendation and the quality of the evidence increase with decreasing CD4 cell count and the presence of certain concurrent conditions. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (tenofovir/emtricitabine or abacavir/lamivudine) plus a nonnucleoside reverse transcriptase inhibitor (efavirenz), a ritonavir-boosted protease inhibitor (atazanavir or darunavir), or an integrase strand transfer inhibitor (raltegravir). Alternatives in each class are recommended for patients with or at risk of certain concurrent conditions. CD4 cell count and HIV-1 RNA level should be monitored, as should engagement in care, ART adherence, HIV drug resistance, and quality-of-care indicators. Reasons for regimen switching include virologic, immunologic, or clinical failure and drug toxicity or intolerance. Confirmed treatment failure should be addressed promptly and multiple factors considered. CONCLUSION: New recommendations for HIV patient care include offering ART to all patients regardless of CD4 cell count, changes in therapeutic options, and modifications in the timing and choice of ART in the setting of opportunistic illnesses such as cryptococcal disease and tuberculosis.
Resumo:
IMPORTANCE: New data and antiretroviral regimens expand treatment choices in resource-rich settings and warrant an update of recommendations to treat adults infected with human immunodeficiency virus (HIV). OBJECTIVE: To provide updated treatment recommendations for adults with HIV, emphasizing when to start treatment; what treatment to start; the use of laboratory monitoring tools; and managing treatment failure, switches, and simplification. DATA SOURCES, STUDY SELECTION, AND DATA SYNTHESIS: An International Antiviral Society-USA panel of experts in HIV research and patient care considered previous data and reviewed new data since the 2012 update with literature searches in PubMed and EMBASE through June 2014. Recommendations and ratings were based on the quality of evidence and consensus. RESULTS: Antiretroviral therapy is recommended for all adults with HIV infection. Evidence for benefits of treatment and quality of available data increase at lower CD4 cell counts. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (NRTIs; abacavir/lamivudine or tenofovir disoproxil fumarate/emtricitabine) and a third single or boosted drug, which should be an integrase strand transfer inhibitor (dolutegravir, elvitegravir, or raltegravir), a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir). Alternative regimens are available. Boosted protease inhibitor monotherapy is generally not recommended, but NRTI-sparing approaches may be considered. New guidance for optimal timing of monitoring of laboratory parameters is provided. Suspected treatment failure warrants rapid confirmation, performance of resistance testing while the patient is receiving the failing regimen, and evaluation of reasons for failure before consideration of switching therapy. Regimen switches for adverse effects, convenience, or to reduce costs should not jeopardize antiretroviral potency. CONCLUSIONS AND RELEVANCE: After confirmed diagnosis of HIV infection, antiretroviral therapy should be initiated in all individuals who are willing and ready to start treatment. Regimens should be selected or changed based on resistance test results with consideration of dosing frequency, pill burden, adverse toxic effect profiles, comorbidities, and drug interactions.