991 resultados para Lake ecology.
Resumo:
Presents classroom activities aimed at students in grades 5 through 8 on the forces impacting water quality and living things within the lake environment.
Resumo:
Includes classroom activities and experiments designed to develop a greater understanding of the forces impacting water quality and the living things within the lake environment.
Resumo:
Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export1 and hence lake ecology with potential feedbacks for regional and global C cycling. C and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food webs. The approach relies on different 13C fractionation in aquatic and terrestrial primary producers, but also that inorganic C demands of aquatic primary producers are partly met by 13C depleted C from respiration of terrestrial C, and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contributions of old and recently fixed terrestrial C. Natural abundance 14C can be used as an additional biomarker to untangle riverine food webs2 where aquatic and terrestrial δ 13C overlap, but may also be valuable for examining the age and origin of C in the lake. Primary production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. As such, 14C can be used to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘fossil’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic alkaline lake. Temporal and spatial variation was evident in DIC, DOC and POM C isotopes with implications for the fluctuation in terrestrial export processes. Ramped pyrolysis of lake surface sediment indicates the burial of two C components. 14C activity (507 ± 30 BP) of sediment combusted at 400˚C was consistent with algal values and younger than bulk sediment values (1097 ± 30 BP). The sample was subsequently combusted at 850˚C, yielding 14C values (1471 ± 30 BP) older than the bulk sediment age, suggesting that fossil terrestrial carbon is also buried in the sediment. Stable isotopes in the food web indicate that terrestrial organic C is also utilised by lake organisms. High winter δ 15N values in calanoid zooplankton (δ 15N = 24%¸) relative to phytoplankton and POM (δ 15N = 6h and 12h respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from an inflowing river (75 ± 24 BP), not phytoplankton (367 ± 70 BP). Summer calanoid δ 13C, δ 15N and 14C (345 ± 80 BP) indicate greater reliance on phytoplankton.
1 Monteith, D.T et al., (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450:537-535
2 Caraco, N., et al.,(2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology,91: 2385-2393.
Resumo:
The present study was carried out to test the hypothesis that photosynthetic bacteria contribute a large portion of the food of filter feeding zooplankton populations in Crawford Lake, Ontario. The temporal and spatial variations of both groups of organisms are strongly dependent on one another. 14 By using C-Iabelled photosynthetic bacteria. the ingestion and clearance rates of Daphnia pulex, ~. rosea, and Keratella spp were estimated during summer and fall of 1982. These quantitative estimations of zooplankton ingestion and clearence rates on photosynthetic bacteria comprised an original addition to the literature. Photosynthetic bacteria comprised a substantial portion of the diet of all four dominant zooplankton species. The evidence for this is based on the ingestion and clearance rates of the dominant zooplankton species. Ingestion rates of D. pulex and D. rosea ranged 5 5 -1 -1 - -- 5 - -- 5 from 8.3X10 -1 to 14.6XlO -1 cells.ind. hr and 8.1X10 to 13.9X10 cells.ind. hr • Their clearance rates ranged from 0.400 to 1.000 -1 -1 -1 -1 ml.ind. hr. and 0.380 to 0.930 ml.ind. hr • The ingestion and clearance -1 -1 -1 -1 rates of Keratella spp were 600 cell.ind. hr and 0.40 ul.ind. hr respectively. Clearance rates were inversely proportional to the concentration of food cells and directly proportional to the body size of the animals. It is believed that despite the very short reg~neration times of photosynthetic bacteria (3-8 hours) their population densities were controlled in part by the feeding rates of the dominant zooplankton in Crawford Lake. By considering the regeneration times of photosynthetic bacteria and the population clearance rates of zooplankton, it was estimated that between 16 to 52% and 11 to 35% of the PHotosynthetic bacteria were' consumed· by Daphnia· pulex. and Q.. rosea per day. The temporal and spatial distribution of Daphnia pulex, !.. rosea, Keratella quadrata, K. coChlearis and photosynthetic bacteria in Crawford Lake were also investigated during the period of October, 1981 to December, 1982. The photosynthetic bacteria in the lake, constituted a major food source for only those zooplankton Which tolerate anaerobic conditions. Changes in temperature and food appeared to correlate with the seasonal changes in zooplankton density. All four dominant species of zooplankton were abundant at the lake's surface (O-4m) during winter and spring and moved downwards with the thermocline as summer stratification proceeded. Photosynthetic bacteria formed a 2 m thick layer at the chemocline. The position of this photosynthetic bacterial J-ayer changed seasonally. In the summer, the bacterial plate moved upwards and following fall mixing it moved downwards. A vertical shift of O.8m (14.5 to 15.3m) was recorded during the period of June to December. The upper limit of the photosynthetic bacteria in the water column was controlled by dissolved oxygen, and sulfide concentrations While their lower limit was controlled by light intensity. A maximum bacterio- 1 chlorophyll concentration of 81 mg Bchl.l was recorded on August 9, 1981. The seasonal distribution of photosynthetic bacteria was controlledinpart' by ·theg.-"z1ai'_.Q;~.zoopl. ank:tCm;-.Qther -ciactors associated with zooplankton grazing were oxygen and sulfide concentrations.
Resumo:
"#31230"--Colophon.
Resumo:
Includes indexes.
Resumo:
This article is intended to open a discussion about the historical development of lakes Zirahuen, Patzcuaro and Cuitzeo in the state of Michoacan, and the postulated relationships between lake ecology and evolution. Dr Fernando De Buen was the first man dedicated to limnology in Mexico who came to the country in the 1930s. He was adviser at the Estacion Limnologica de Patzcuaro and wrote outstanding papers dealing with Mexican lakes. The lakes of Michoacan probably formed in the late Pliocene or Holocene, and were part of a tributary to the Lerma River, which became isolated by successive volanic barriers to form lake basins. Lake Zirahuen is a warm monomictic waterbody with unique water dynamics amongst the Michoacan lakes. Because it is relatively deep (max depth 40m), seasonal patterns of alternating circulation and thermal stratification develop in the lake, a feature not shared by the other two polymictic shallow lakes, Patzcuaro and Cuitzeo.
Resumo:
Booklet telling the story of the FBA from its founding in 1929 until its Golden Jubilee in 1979. The booklet aimed to produce a readable account of those aspects of freshwater biology that have been among the main themes of the Association's research, as well as some aspects of its history and the philosophy guiding its foundation. The publication includes many images of the FBA's work and history as well as images and illustrations on lake ecology and applied science.
Resumo:
Crawford Lake is a meromictic lake, which is 24 m deep and has an area of 2.5 ha, and has never been reported to have mixed below 16 m. Lady Evelyn Lake, which became a reservoir when a dam was built in 1916, is dimictic with a maximum depth of about 35 m. 1 My research proved that both native chlorophylls and the ratio of chlorophyll derivatives to total carotenoids were better preserved in the shallower lake (Crawford Lake) because it was meromictic. Thus the anaerobic conditions in Crawford Lake below 16 m (monimolimnion) provide excellent conditions for pigment preservation. Under such conditions, the preservation of both chlorophylls and carotenoids, including oscillaxanthin and myxoxanthophyll, are extremely good compared with those of Lady Evelyn Reservoir, in which anaerobic conditions are rarely encountered at the mud-water interface. During the period from 1500 to 1900 A. D. in Crawford Lake, the accumulation rates of oscillaxanthin and myxoxanthophyll were extremely high, but those of chlorophyll derivatives and total carotenoids were relatively low. This was correlated with the presence of a dense benthic mat of cyanobacteria near the lake's chemocline. Competition for light between the deep dwelling cyanobacteria and overlying phytoplankton in this meromictic lake would have been intensified as the lake became more and more eutrophic (1955-1991 A. D.). During the period from 1955 to 1991 A. D., the accumulation rates of chlorophyll derivatives and total carotenoids in the sediment core from Crawford Lake (0-7.5 cm, 1955-present) increased. During this same period, the accumulation rates of cyanobacterial pigments (Le. oscillaxanthin and myxoxanthophyll) declined as the lake became more eutrophic. Because the major cyanobacteria in Crawford Lake are benthic mat forming Lyngbya and Oscillatoria and not phytoplankton, eutrophication resulted in a decline of the mat forming algal pigments. This is important because in previous palaeolimnological studies the concentrations of oscillaxanthin and myxoxanthophyll have been used as correlates with lake trophic levels. The results of organic carbon a13c analysis on the Crawford Lake sediment core supported the conclusions from the pigment study as noted above. High values of a13c at the depth of 34-48 cm (1500-1760 A. D.) were related to a dense population of benthic Oscillatoria and Lyngbya living on the bottom of the lake during that period. The Oscillatoria and Lyngbya utilized the bicarbonate, which had a high a 13C value. Very low values were found at 0-7 cm in the Crawford sediment core. At this time phytoplankton was the main primary producer, which enriched 12C by photosynthetic assimilation.
Resumo:
The purpose of this study was to develop a classifi cation scheme for l ake trophic status based on the relative abundance of l ake sediment diatom trophic indicator species. A total of 600 diatom frustules were counted from the surface sediments of e a ch of 30 lakes selected to repr e seni~ a continuum from u.lt ra-oligotrophic t,o fairly eutrophic but not hype r-' eutrophic conditions. Published autecological information was used to determine the trophic indicator status of each of the s pecies. A quotieht was derived by dividing the s um of all the e utrophic indicator species by the sum of all oligotrophic indicai.-:.or species. Oligo'- mesotrophic. mesotrophic and meso-eutrophic species were added to both the numerator and denomina tor. Five categories of diatom i.nferred trophic status were recognized : ultra-oligotrophic - 0'-0.2:3, oligotrophic::: 0.24-0 . 70, mesotrophic :: 0.'71 -0.99, meso-elxtrophic :: 1. 00-1. '78 and eutrophic:: 1.. 79-2. 43. But only three of these (oligotrophic:: 0-0.69, mesotrophic ::: 0 . 70'-1.69 j and eutrophic:: 1.70-2.50) proved usef ul. The present study of the relationship between diatom inferred trophic status and the literature-derived trophic status of SO lake s (which were purposely chosen to represent a broad spectrum of lakes in Canada) indicated that: 1) Based on diatom species (assemblages ) it is possible to segregate the lakes from which. th",)se diatoms were taken into three basic categories : o ligotrophic, mesotrophic and eutrophic lake types. ~~) It was not possible t,o separate meso-eutrophic and o l igo-mesotrophic lakes f rom mesotrophic l akes as the the degree of overlap betwee n the diat,om species in these lake types was extremely high. 3) Ha d mo r e ul tra-oligotroph,ic lakes been sampled it might have been possible to more a ccurately s eparate them f rom oligotrophic Jakes. 4 ) Had. more humic lakes been sampled in this s tudy I f eel it would have been possible to identify a unique diatom a ssemblage which would h a ve chara cterized t his lake type . Re gression analyses were performed using the aforementioned diatom inferred trophic index as a f unction of 1) log Sec chi transparency (r = - 0.70) 2) total phosphorus (r = 0. 77 ) and 3) chlorophyll-a (r = 0.74). Once e ach of these rel ationships had been established , it was possible to infer paleotrophic (downcore) changes in an oligotrophic lake (Barbara Lake) and in a eutrophic lake (Chemung Lake) . Barbara Llake was dominated by oligotrophic s pecies and remained oligotrophic throughout the 200-·year history r epresented by i t s 32 em long sediment core. Chemung Lake is currently dominated. by eutrophic species but went through a mesotrophic st,age which was associated with a rise in the water level of the lake followi n g dam construction in its watershed in the early 1.900 J ::;. This was followed by its reversion to it,s present day eutrophic stage (dominated by eutrophic species) possibly as a r esult of shallowing process which can be attributed to " silting' up" of the reservoir and the invasion of the l ake by Myriophyllum spjcatum (Eurasian milfoil) i n the 1970's . In addition, nutrient .:r':l.ch run"'offwhich resulted from increased human a.ctivities associated with cottage development along its shores has contribut ed to its eutrophication. There is some evidence that the rat,e o :f its prog ressive eutrophication has declined during the last decade. This was correlated with legislation enacted in the 60's and 70's in Ontario which was aimed at reducing nutrient loading from cottages.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The common occurrence of parallel phenotypic patterns suggests that a strong relationship exists between ecological dynamics and micro-evolution. Comparative studies from a large number of populations under varying sets of ecological drivers could contribute to a better understanding of this relationship. We used data on morphology of arctic charr (Salvelinus alpinus) and ecological factors from 35 Icelandic lakes to test the hypothesis that morphological patterns among monomorphic charr populations from different lakes are related to interlake variation in ecological characteristics. There is extensive phenotypic diversity among populations of Icelandic charr, and populations are easily distinguished based on overall body morphology. The results obtained in the present study showed that the morphological diversity of charr was related to large-scale diversity in lake ecology. Variation in charr morphology was related to water origin (e.g. spring fed versus run-off), bedrock age, and fish community structure. The present study shows how various ecological factors can shape the biological diversity that we observe.
Resumo:
"Mar-2001"--Colophon.