1000 resultados para Lake Okeechobee


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future water needs in southern Florida call for an increase in the storage capacity of Lake Okeechobee. Seepage from the lake is expected to increase as a result of raising the lake level. Data concerning the occurrence and amounts of seepage are needed for the design and operation of flood-control works which will remove excess water from the rich agricultural lands along the southern shore. Intensive studies at five sites along the southern shore of Lake Okeechobee between the Caloosahatchee Canal and the St. Lucie Canal indicate that seepage occurs chiefly through beds of shell and limestone which underlie the Hoover Dike at shallow depth. Seepage rates at the five sites range from about 0.1 to 0.9 cfs per mile per foot of head across the dike. Seepage beneath the 50-mile length of dike should increase from about 22 to 50 cfs if the average stage of the lake is raised from 14 to 16.5 feet. Seepage is greatest between Moore Haven and Clewiston, where deep borrows have been excavated on the landward and lakeward sides of the dike. Most of the seepage from the lake can be controlled by properly spaced toe ditches which would intercept the seepage and return it to the lake. (PDF contains 108 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major objectives of this dissertation were to develop optimal spatial techniques to model the spatial-temporal changes of the lake sediments and their nutrients from 1988 to 2006, and evaluate the impacts of the hurricanes occurred during 1998–2006. Mud zone reduced about 10.5% from 1988 to 1998, and increased about 6.2% from 1998 to 2006. Mud areas, volumes and weight were calculated using validated Kriging models. From 1988 to 1998, mud thicknesses increased up to 26 cm in the central lake area. The mud area and volume decreased about 13.78% and 10.26%, respectively. From 1998 to 2006, mud depths declined by up to 41 cm in the central lake area, mud volume reduced about 27%. Mud weight increased up to 29.32% from 1988 to 1998, but reduced over 20% from 1998 to 2006. The reduction of mud sediments is likely due to re-suspension and redistribution by waves and currents produced by large storm events, particularly Hurricanes Frances and Jeanne in 2004 and Wilma in 2005. Regression, kriging, geographically weighted regression (GWR) and regression-kriging models have been calibrated and validated for the spatial analysis of the sediments TP and TN of the lake. GWR models provide the most accurate predictions for TP and TN based on model performance and error analysis. TP values declined from an average of 651 to 593 mg/kg from 1998 to 2006, especially in the lake’s western and southern regions. From 1988 to 1998, TP declined in the northern and southern areas, and increased in the central-western part of the lake. The TP weights increased about 37.99%–43.68% from 1988 to 1998 and decreased about 29.72%–34.42% from 1998 to 2006. From 1988 to 1998, TN decreased in most areas, especially in the northern and southern lake regions; western littoral zone had the biggest increase, up to 40,000 mg/kg. From 1998 to 2006, TN declined from an average of 9,363 to 8,926 mg/kg, especially in the central and southern regions. The biggest increases occurred in the northern lake and southern edge areas. TN weights increased about 15%–16.2% from 1988 to 1998, and decreased about 7%–11% from 1998 to 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake Okeechobee, Florida, located in the middle of the larger Kissimmee River-Lake Okeechobee-Everglades ecosystem in South Florida, serves a variety of ecosystem and water management functions including fish and wildlife habitat, flood control, water supply, and source water for environmental restoration. As a result, the ecological status of Lake Okeechobee plays a significant role in defining the overall success of the greater Everglades ecosystem restoration initiative. One of the major ecological indicators of Lake Okeechobee condition focuses on the near-shore and littoral zone regions as characterized by the distribution and abundance of submerged aquatic vegetation (SAV) and giant bulrush (Scirpus californicus(C.A. Mey.) Steud.). The objective of this study is to present a stoplight restoration report card communication system, common to all 11 indicators noted in this special journal issue, as a means to convey the status of SAV and bulrush in Lake Okeechobee. The report card could be used by managers, policy makers, scientists and the public to effectively evaluate and distill information about the ecological status in South Florida. Our assessment of the areal distribution of SAV in Lake Okeechobee is based on a combination of empirical SAV monitoring and output from a SAV habitat suitability model. Bulrush status in the lake is related to a suitability index linked to adult survival and seedling establishment metrics. Overall, presentation of these performance metrics in a stoplight format enables an evaluation of how the status of two major components of Lake Okeechobee relates to the South Florida restoration program, and how the status of the lake influences restoration efforts in South Florida.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We compared the nutrient dynamics of three lakes that have been heavily influenced by point and non-point source pollution and other human activities. The lakes, located in Japan (Lake Kasumigaura), People's Republic of China (Lake Donghu), and the USA (Lake Okeechobee), all are relatively large(>30 km(2)), very shallow (<4 m mean depth), and eutrophic. In all three lakes we found strong interactions among the sediments, water column, and human activities. Important processes affecting nutrient dynamics included nitrogen fixation, light limitation due to resuspended sediments, and intense grazing on algae by cultured fish. As a result of these complex interactions, simple empirical models developed to predict in-lake responses of total phosphorus and algal biomass to external nutrient loads must be used with caution. While published models may provide 'good' results, in terms of model output matching actual data, this may not be due to accurate representation of lake processes in the models. The variable nutrient dynamics that we observed among the three study lakes appears to be typical for shallow lake systems. This indicates that a greater reliance on lake-specific research may be required for effective management, and a lesser role of inter-lake generalization than is possible for deeper, dimictic lake systems. Furthermore, accurate predictions of management impacts in shallow eutrophic lakes may require the use of relatively complex deterministic modeling tools. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies were conducted to evaluate whether the herbicide imazapyr or a combination of imazapyr and fluridone could be used effectively to control torpedograss ( Panicum repens L.), an exotic perennial plant that has replaced more than 6,000 ha of native vegetation and degraded quality wildlife habitat in Lake Okeechobee, Florida. Torpedograss was controlled for more than one year in some areas following a single aerial treatment using 0.56, 0.84, or 1.12 kg acid equivalents (ae) imazapyr/ha. Combining imazapyr and fluridone did not increase the level of torpedograss control. In areas where plant biomass was reduced by fire prior to being treated with 0.84 or 1.12 kg ae imazapyr/ha, torpedograss was controlled for more than two years and native plant species, including duck potato ( Sagittaria lancifolia L.) and pickerelweed ( Pontederia cordata L.) became the dominant vegetation in less than one year. Although torpedograss was controlled in some areas, little or no long-term control was observed at 16 of the 26 treatment locations. To reduce the uncertainty associated with predicting long-term treatment affects, additional studies are needed to determine whether environmental factors such as periphyton mats, plant thatch, hydroperiod and water depth affect treatment efficacy. , he

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was done to determine the amount and kinds of water being produced from the lower Hillsboro Canal Area in Palm Beach and Broward counties. All of the potable ground water being produced from the Biscayne aquifer is developed from the canal through infiltration. Rainfall in the area is the ultimate source for all of the water. Careful control and management will allow the development of large quantities of water from the canal toward Lake Okeechobee, but a fresh water head must be maintained along the contact of fresh water with sea water to prevent salt water intrusion. (PDF contains 51 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wayside Trees is an beautifully illustrated guide to Florida trees growing south of Lake Okeechobee. It covers both native and exotic species in the areas of Miami to Palm Beach on the east coast, and Naples to Fort Meyers on the west. The introduction describes environmental, cultural and economic importance of trees, while a non-technical key provides a means for even non-specialists to identify the 167 most common species. The bulk of the book consists of illustrated descriptions of the trees, arranged by plant family, and includes ecological and cultural information on each species. Lavishly illustrated with over 1200 color photographs and diagrams, the book is designed to serve homeowners, gardeners, teachers and students, as well as environmental professionals. It is also a useful guide to urban tropical trees growing outside south Florida. The authors, a botanist and a graphic artist, have 70 collective years of experience living, working, and loving the trees of south Florida.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a comprehensive ecological indicator for invasive exotic plants, a human-influenced component of the Everglades that could threaten the success of the restoration initiative. Following development of a conceptual ecological model for invasive exotic species, presented as a companion paper in this special issue, we developed criteria to evaluate existing invasive exotic monitoring programs for use in developing invasive exotic performance measures. We then used data from the selected monitoring programs to define specific performance measures, using species presence and abundance as the basis of the indicator for invasive exotic plants. We then developed a series of questions used to evaluate region and/or individual species status with respect to invasion. Finally, we used an expert panel who had answered the questions for invasive exotic plants in the Everglades Lake Okeechobee model to develop a stoplight restoration report card to communicate invasive exotic plant status. The report card system provides a way to effectively evaluate and present indicator data to managers, policy makers, and the public using a uniform format among indicators. Collectively, the model, monitoring assessment, performance measures, and report card enable us to evaluate how invasive plants are impacting the restoration program and how effectively that impact is being managed. Applied through time, our approach also allows us to follow the progress of management actions to control the spread and reduce the impacts of invasive species and can be easily applied and adapted to other large-scale ecosystem projects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lepisosteus osseus (Longnose Gar) is a large-bodied predator, whose Florida distribution remains unclear at the southern edge of its range. We reviewed available literature and museum voucher specimens to provide a more accurate range description, and we discuss recent collections in south Florida. Longnose Gar has not been previously reported in natural habitats south of Lake Okeechobee. Instead, records south of the lake are from canals, and most are recent (since 2000), including our own southernmost 2011 record. No records from Everglades natural habitats have been collected. Previous studies have shown native range expansions in anthropogenically disturbed landscapes. We suggest that the Longnose Gar is expanding its range southward in Florida using canals as dispersal vectors and/or suitable habitat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Florida Bay is a highly dynamic estuary that exhibits wide natural fluctuations in salinity due to changes in the balance of precipitation, evaporation and freshwater runoff from the mainland. Rapid and large-scale modification of freshwater flow and construction of transportation conduits throughout the Florida Keys during the late nineteenth and twentieth centuries reshaped water circulation and salinity patterns across the ecosystem. In order to determine long-term patterns in salinity variation across the Florida Bay estuary, we used a diatom-based salinity transfer function to infer salinity within 3.27 ppt root mean square error of prediction from diatom assemblages from four ~130 year old sediment records. Sites were distributed along a gradient of exposure to anthropogenic shifts in the watershed and salinity. Precipitation was found to be the primary driver influencing salinity fluctuations over the entire record, but watershed modifications on the mainland and in the Florida Keys during the late-1800s and 1900s were the most likely cause of significant shifts in baseline salinity. The timing of these shifts in the salinity baseline varies across the Bay: that of the northeastern coring location coincides with the construction of the Florida Overseas Railway (AD 1906–1916), while that of the east-central coring location coincides with the drainage of Lake Okeechobee (AD 1881–1894). Subsequent decreases occurring after the 1960s (east-central region) and early 1980s (southwestern region) correspond to increases in freshwater delivered through water control structures in the 1950s–1970s and again in the 1980s. Concomitant increases in salinity in the northeastern and south-central regions of the Bay in the mid-1960s correspond to an extensive drought period and the occurrence of three major hurricanes, while the drop in the early 1970s could not be related to any natural event. This paper provides information about major factors influencing salinity conditions in Florida Bay in the past and quantitative estimates of the pre- and post-South Florida watershed modification salinity levels in different regions of the Bay. This information should be useful for environmental managers in setting restoration goals for the marine ecosystems in South Florida, especially for Florida Bay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrologic modifications have negatively impacted the Florida Everglades in numerous significant ways. The compartmentalization of the once continuously flowing system into the Water Conservation Areas (WCAs) caused disruption of the slow natural flow of water south from Lake Okeechobee through the Everglades to Florida Bay. The ponding of water in the WCAs, the linking of water flow to controlled water levels, and the management of water levels for anthropogenic vs. ecological well-being has caused a reduction in the spatial heterogeneity of the Everglades leading to greater uniformity in topography and vegetation. These effects are noticeable as the degradation in structure of the Everglades Ridge and Slough environment and associated Tree Islands. In aquatic systems water flow is of fundamental importance in shaping the structure and function of the ecosystem. The organized patterns of parallel orientation of ridges, sloughs, and tear-drop shaped tree islands along historic flow paths attest to the importance of water movement in structuring this system. Our main objective was to operate and manage the LILA facility to provide a broad potential as a research platform for an integrated group of multidisciplinary, multi-agency scientists collaborating on multifunctional studies aimed primarily at determining the effects of CERP water management scenarios on the ecology of tree islands and ridge and slough habitats. We support Everglades water management, CERP, and the Long-Term Plan by defining hydrologic regimes that sustain healthy tree islands and ridge and slough ecosystems. Information gained through this project will help to reduce the uncertainty of predicting the tree island and ridge and slough ecosystem response to changes in hydrologic conditions. Additionally, we have developed the LILA site as a visual example of Everglades restoration programs in action.