596 resultados para Lagrange multipliers
Resumo:
Physically-based modeling for computer animation allows to produce more realistic motions in less time without requiring the expertise of skilled animators. But, a computer animation is not only a numerical simulation based on classical mechanics since it follows a precise story-line. One common way to define aims in an animation is to add geometric constraints. There are several methods to manage these constraints within a physically-based framework. In this paper, we present an algorithm for constraints handling based on Lagrange multipliers. After few remarks on the equations of motion that we use, we present a first algorithm proposed by Platt. We show with a simple example that this method is not reliable. Our contribution consists in improving this algorithm to provide an efficient and robust method to handle simultaneous active constraints.
Resumo:
The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Service systems are labor intensive. Further, the workload tends to vary greatly with time. Adapting the staffing levels to the workloads in such systems is nontrivial due to a large number of parameters and operational variations, but crucial for business objectives such as minimal labor inventory. One of the central challenges is to optimize the staffing while maintaining system steady-state and compliance to aggregate SLA constraints. We formulate this problem as a parametrized constrained Markov process and propose a novel stochastic optimization algorithm for solving it. Our algorithm is a multi-timescale stochastic approximation scheme that incorporates a SPSA based algorithm for ‘primal descent' and couples it with a ‘dual ascent' scheme for the Lagrange multipliers. We validate this optimization scheme on five real-life service systems and compare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of magnitude faster than OptQuest, our scheme is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees convergence and finds better solutions than OptQuest in many cases.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
This work deals with the transient analysis of flexible multibody systems within a hybrid finite element framework. Hybrid finite elements are based on a two-field variational formulation in which the displacements and stresses are interpolated separately yielding very good coarse mesh accuracy. Most of the literature on flexible multibody systems uses beam-theory-based formulations. In contrast, the use of hybrid finite elements uses continuum-based elements, thus avoiding the problems associated with rotational degrees of freedom. In particular, any given three-dimensional constitutive relations can be directly used within the framework of this formulation. Since the coarse mesh accuracy as compared to a conventional displacement-based formulation is very high, the scheme is cost effective as well. A general formulation is developed for the constrained motion of a given point on a line manifold, using a total Lagrangian method. The multipoint constraint equations are implemented using Lagrange multipliers. Various kinds of joints such as cylindrical, prismatic, and screw joints are implemented within this general framework. Hinge joints such as spherical, universal, and revolute joints are obtained simply by using shared nodes between the bodies. In addition to joints, the formulation and implementation details for a DC motor actuator and for prescribed relative rotation are also presented. Several example problems illustrate the efficacy of the developed formulation.
Resumo:
The question of finding variational principles for coupled systems of first order partial differential equations is considered. Using a potential representation for solutions of the first order system a higher order system is obtained. Existence of a variational principle follows if the original system can be transformed to a self-adjoint higher order system. Existence of variational principles for all linear wave equations with constant coefficients having real dispersion relations is established. The method of adjoining some of the equations of the original system to a suitable Lagrangian function by the method of Lagrange multipliers is used to construct new variational principles for a class of linear systems. The equations used as side conditions must satisfy highly-restrictive integrability conditions. In the more difficult nonlinear case the system of two equations in two independent variables can be analyzed completely. For systems determined by two conservation laws the side condition must be a conservation law in addition to satisfying the integrability conditions.
Resumo:
Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.
In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
Resumo:
A Atenção Primária à Saúde - APS é reconhecida como o nível fundamental e porta de entrada do sistema de atenção à saúde, sendo o lugar adequado onde pode ser atendida e resolvida a maior parte dos problemas de saúde. É considerada pela OMS como a principal proposta de modelo assistencial. Essa importância da APS leva a necessidade de pesquisas avaliativas dos seus resultados para adequação e melhoria de políticas e planos de ação delineados em relação à mesma. Pesquisas internacionais e nacionais são realizadas, nas quais indicadores relativos às atividades hospitalares estão sendo empregados com o objetivo de medir resultados como efetividade e acesso da APS. Um desses indicadores, desenvolvido por John Billings da Universidade de Nova York, na década de 90, consiste nas condições pelas quais as internações hospitalares por Condições Sensíveis à Atenção Ambulatorial (CSAA) deveriam ser evitadas caso os serviços da APS fossem efetivos e acessíveis. Utilizando-se o SIH-AIH/2008 e a lista brasileira de Internações por Condições Sensíveis a Atenção Primária, publicada em 2008, a proposta do presente trabalho é a de estudar os cuidados primários à saúde baseando-se nas ICSAA, na área urbana da cidade de Juiz de Fora-MG. Buscou-se responder sobre os efeitos que ocorrem nessas internações a partir das características individuais dos pacientes, das características das Unidades Básicas de Saúde-UBS (infraestrutura, produção e modelos assistenciais) e das condições sócio-econômicas/ambientais das áreas cobertas por UAPS e descobertas (sem UAPS), com a utilização de modelos multiníveis logísticos com intercepto aleatório. Buscou-se conhecer, também, a distribuição espacial das taxas padronizadas por idade das ICSAA nessas áreas e suas associações com as variáveis contextuais, utilizando-se ferramentas da análise espacial. Os resultados do presente trabalho mostraram que a porcentagem de internações por CSAA, foi de 4,1%. Os modelos assistenciais ESF e o Modelo Tradicional, base da organização da atenção primária no Brasil, não apresentaram no município, impacto significativo nas ICSAA, somente na forma de áreas descobertas tendo como referência as áreas cobertas. Também não foram significativas as variáveis de infraestrutura e produção das UAPS. Os efeitos individuais (idade e sexo) nas ICSAA foram significativos, apresentando probabilidades de significância menores que 1%, o mesmo acontecendo com o Índice de Desenvolvimento Social-IDS, que contempla as condições sociais, econômicas e ambientais das áreas analisadas. A distribuição espacial das taxas padronizadas por idade apresentou padrão aleatório e os testes dos Multiplicadores de Lagrange não foram significativos indicando o modelo de regressão clássico (MQO) como adequado para explicar as taxas em função das variáveis contextuais. Para a análise conjunta das áreas cobertas e descobertas foram fatores de risco: a variável econômica (% dos domicílios com renda até 2 SM), áreas descobertas tendo como referência as áreas cobertas e a região nordeste do município. Para as áreas cobertas as variáveis de produção das UAPS, econômica e a região nordeste apresentaram como fator de risco para as taxas de internação por CSAA.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
Lecture notes in PDF
Resumo:
Lecture notes in LaTex
Resumo:
We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen–Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen–Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.
Resumo:
A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)