959 resultados para Lagrange Principle


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AMS subject classification: 41A17, 41A50, 49Kxx, 90C25.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for the active transmission losses allocation between the agents of the system. The approach uses the primal and dual variable information of the Optimal Power Flow in the losses allocation strategy. The allocation coefficients are determined via Lagrange multipliers. The paper emphasizes the necessity to consider the operational constraints and parameters of the systems in the problem solution. An example, for a 3-bus system is presented in details, as well as a comparative test with the main allocation methods. Case studies on the IEEE 14-bus systems are carried out to verify the influence of the constraints and parameters of the system in the losses allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FAPESP, the Sao Paulo State Research Foundation[04/04611-5]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we devise a separation principle for the finite horizon quadratic optimal control problem of continuous-time Markovian jump linear systems driven by a Wiener process and with partial observations. We assume that the output variable and the jump parameters are available to the controller. It is desired to design a dynamic Markovian jump controller such that the closed loop system minimizes the quadratic functional cost of the system over a finite horizon period of time. As in the case with no jumps, we show that an optimal controller can be obtained from two coupled Riccati differential equations, one associated to the optimal control problem when the state variable is available, and the other one associated to the optimal filtering problem. This is a separation principle for the finite horizon quadratic optimal control problem for continuous-time Markovian jump linear systems. For the case in which the matrices are all time-invariant we analyze the asymptotic behavior of the solution of the derived interconnected Riccati differential equations to the solution of the associated set of coupled algebraic Riccati equations as well as the mean square stabilizing property of this limiting solution. When there is only one mode of operation our results coincide with the traditional ones for the LQG control of continuous-time linear systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why did Levinas choose Isaiah 45:7 ("I make peace and create evil: I the Lord do all that") as a superscription of his essay on evil? This article explores the role of evil in Levinas's religious ethics. The author discusses the structure of evil as revealed phenomenologically and juxtaposes it to the structure of subjectivity found in the writings of Levinas. The idea of the "ethical anthropic principle," modeled upon the cosmic anthropic principle, is then used to link evil to the responsibility of the subject. The link is subsequently extended to God. This is proposed as one way of understanding the meaning of Isaiah 45:7. © 2001 Journal of Religious Ethics, Inc.

Relevância:

20.00% 20.00%

Publicador: