4 resultados para LaOCl


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue, yellow and white light emissive LaOCl:Tm3+, LaOCl:Dy3+ and LaOCl: Tm3+, Dy3+ nanocrystalline phosphors were synthesized through the Pechini-type sol-gel process. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and cathodoluminescence (CL) spectra were used to characterize the samples. Under UV radiation (229 nm) and low-voltage electron beam (0.5-5 kV) excitation, the Tm3+-doped LaOCl phosphor shows a very strong blue emission corresponding to the characteristic transitions of Tm3+ (D-1(2), (1)G(4) -> F-3(4), H-3(6)) with the strongest emission at 458 nm. The cathodoluminescent color of LaOCl:Tm3+ is blue to the naked eye with CIE coordinates of x = 0.1492, y = 0.0684. This phosphor has better CIE coordinates and higher emission intensity than the commercial product Y2SiO5:Ce3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline LaOCl:Tb3+/Sm3+ phosphors were synthesized by a Pechini-type sol-gel process. Under UV and electron-beam excitation, LaOCl:Tb3+/Sm3+ show the characteristic emission of Tb3+ (D-5(3,4) -> F-7(6), ... (2)) and Sm3+ ((4)G(5/2) -> H-6(5/2),(7/2),(9/2)), respectively. In particular, the cathodoluminescence (CL) color of LaOCl:Tb3+ can be tuned from blue to green by changing Tb3+-doped concentration, and their CL intensities (brightness) are higher than those of commercial products Y2SiO5:Ce3+ and ZnO:Zn, respectively. White CL can be realized by codoping with Tb3+ and Sm3+ in a single-phase LaOCl host. The obtained white light is very close to the standard white light. These phosphors are promising for application in field-emission displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eu3+-activated layered LnOCl (Ln=La and Gd) phosphors were synthesized by the conventional solid-state method at relatively low temperature (700 degrees C) and shorter duration of 2 h. The structural parameters were refined by the Rietveld refinement analysis and confirmed by the high resolution transmission electron microscopy (HRTEM). Both the compounds were crystallized in the tetragonal structure with space group P4/nmm (No. 129). The homogeneity of the elements were analyzed by TEM mapping and found to be uniformly distributed. The photoluminescence spectra revealed that the intensity of D-5(0)-> F-7(2) transition (619 nm) was more intense in Eu3+-activated GdOCl compared to LaOCl. This was due to the property of Gd3+ ions to act as an intermediate sublattice to facilitate the energy transfer to Eu3+ ions. Intensity parameters and radiative properties such as transition probabilities, radiative lifetime and branching ratio were calculated using the Judd-Ofelt theory. The CIE color coordinates result revealed that the Eu3+-activated GdOCl (0.641, 0.354) phosphor was close to the commercial red phosphors like, Y2O3:Eu3+ (0.645, 0.347), (Y2OS)-S-2:Eu3+ (0.647, 0.343) and National Television System Committee (NTSC) (0.67, 0.33). The results suggest that the present GdOCl:Eu3+ compound acts as a potential candidate for red phosphor materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

用等温饱和法测定了单一稀土氧氯化镧 (LaOCl)和混合稀土氧氯化物 (REOCl)在冰晶石 (Na3AlF6 ) 氧化铝 (Al2 O3)熔体中的溶解度。结果表明 :LaOCl和REOCl的溶解度变化规律一致 ,即其溶解度随温度升高而增大 ;随着冰晶石分子比增加而增大 ;当有 4 0 % (质量分数 )Al2 O3存在时 ,其溶解度相应减少。