988 resultados para LSU rDNA barcode region
Resumo:
Twenty-five specimens of the freshwater red alga Compsopogon were collected from locations in North America, South America, Europe, Asia, Australasia and Oceania, and from an aquarium, with the goal of determining genetic diversity among specimens and ascertaining the number of phylogenetic species. Specimens were morphologically identified as having either the 'caeruleus' morphology, with regular polyhedral cortical cells, or the 'leptoclados' morphology, with irregular cortical cells with rhizoidal outgrowths. The 'leptoclados' morphology has been used by some researchers to distinguish the genus Compsopogonopsis from Compsopogon, or at least to distinguish C. leptoclados from other Compsopogon species. Sequence data for the rbcL gene and cox1 barcoding region were obtained for most specimens. In addition, SSU and partial LSU (barcode) rDNA were explored for a few specimens, but all sequences were identical. For the 25 newly generated and eight previously published rbcL gene data, there were seven unique haplotypes, but the sequence divergence was very low (≤7 bp, ≤ 0.7%). One haplotype was widespread, represented by 21 specimens from diverse locations in all regions sampled. Likewise, the 22 new and one previously published cox1 barcode region sequences yielded seven unique haplotypes with little sequence divergence (≤13 bp, ≤ 2.0%). One haplotype was widespread, being shared among 16 specimens from all regions. The combined molecular and morphological data showed no genetic differentiation between the 'caeruleus' and 'leptoclados' morphologies. The ubiquitous distribution of Compsopogon in tropical/subtropical regions and its low genetic variation are probably facilitated by the alga's ability to tolerate a wide range of stream conditions and its propagation via asexual spores. Given the findings of previous culture-based studies, morphometric research and field observations, coupled with the results of our study, we conclude there is only a single monospecific genus worldwide and that the species is correctly called C. caeruleus, since this is the oldest validly published name; all other previously described species of Compsopogon and Compsopogonopsis are synonyms. © 2013 British Phycological Society.
Resumo:
The taxonomic status of the species Clibanarius sclopetarius (Herbst, 1796) and Clibanarius vittatus (Bosc, 1802), which have sympatric biogeographical distributions restricted to the western Atlantic Ocean, is based only on differences in the colour pattern of the walking legs of adults. Their morphological similarity led to the suggestion that they be synonymised. In order to investigate this hypothesis, we included species of Clibanarius Dana, 1892 in a molecular phylogenetic analysis of partial sequences of the mitochondrial 16S rDNA gene and the COI barcode region. In addition, we combined the molecular results with morphological observations obtained from several samples of these two species. The genetic divergences of the 16S rDNA and COI sequences between C. sclopetarius and C. vittatus ranged from 4.5 to 5.9% and 9.4 to 11.9%, which did not justify their synonymisation. Differences in the telson morphology, chela ornamentation, and coloration of the eyestalks and antennal peduncle provided support for the separation of the two species. Another interesting result was a considerable genetic difference found between populations of C. vittatus from Brazil and the Gulf of Mexico, which may indicate the existence of two homonymous species.
Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium
Resumo:
The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Restriction fragment length polymorphism (RFLP) and sequence analyses of the PCR-amplified 16S-23S rDNA intergenic spacer (ITS) were used for differentiating Acidithiobacillus thiooxidans strains from other related acidithiobacilli, including A. ferrooxidans and A. caldus. RFLP fingerprints obtained with AluI, DdeI, HaeIII, HinfI and MspI enabled the differentiation of all Acidithiobacillus reference strains into species groups. The A. thiooxidans strains investigated (metal mine isolates) yielded identical RFLP patterns to the A. thiooxidans type strain (ATCC 19377(T)), except for strain DAMS, which had a distinct pattern for all enzymes tested. Fourteen A. ferrooxidans mine strains were assigned to 3 RFLP groups, the majority of which were grouped with A. ferrooxidans ATCC 23270(T). The spacer region of one representative strain from each of the RFLP groups obtained was subjected to sequence analysis, in addition to eleven additional A. thiooxidans strains isolated from sediment and water samples, and A. caldus DSM 8584(T). The tRNA(IIe) and tRNA(Ala) genes, present in all strains analyzed, showed high sequence similarity. Phylogenetic analysis of the ITS sequences differentiated all three Acidithiobacillus species. Inter- and infraspecific genetic variations detected were mainly due to the size and sequence polymorphism of the ITS3 region. Mantel tests showed no significant correlation between ITS sequence similarity and the geographical origin of strains. The results showed that the 16S-23S rDNA spacer region is a useful target for the development of molecular-based methods aimed at the detection, rapid differentiation and identification of acidithiobacilli. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Molecular characterisation of Bursaphelenchus cocophilus, the causal agent of ‘red ring disease’, is imperative for efficient identification procedures in Brazil and Colombia, because quarantine species such as B. xylophilus and B. mucronatus are already listed in both countries. ITS-1/2 region and D2-D3 segment of LSU rDNA were used to characterise isolates of B. cocophilus obtained from coconut plantations in Brazil and Colombia. Results from ITS-1/2 and LSU rDNA regions showed that all isolates of B. cocophilus from Brazil and Colombia formed a monophyletic group. The LSU rDNA region indicated that all isolates formed a single monophyletic group with high Bayesian posterior probability (100%). This is the first study on ITS-1/2 for the characterisation of B. cocophilus populations. A species-specific primer was designed for identification of B. cocophilus.
Resumo:
Currently there are ~3000 known species of Sarcophagidae (Diptera), which are classified into 173 genera in three subfamilies. Almost 25% of sarcophagids belong to the genus Sarcophaga (sensu lato) however little is known about the validity of, and relationships between the ~150 (or more) subgenera of Sarcophaga s.l. In this preliminary study, we evaluated the usefulness of three sources of data for resolving relationships between 35 species from 14 Sarcophaga s.l. subgenera: the mitochondrial COI barcode region, ~800. bp of the nuclear gene CAD, and 110 morphological characters. Bayesian, maximum likelihood (ML) and maximum parsimony (MP) analyses were performed on the combined dataset. Much of the tree was only supported by the Bayesian and ML analyses, with the MP tree poorly resolved. The genus Sarcophaga s.l. was resolved as monophyletic in both the Bayesian and ML analyses and strong support was obtained at the species-level. Notably, the only subgenus consistently resolved as monophyletic was Liopygia. The monophyly of and relationships between the remaining Sarcophaga s.l. subgenera sampled remain questionable. We suggest that future phylogenetic studies on the genus Sarcophaga s.l. use combined datasets for analyses. We also advocate the use of additional data and a range of inference strategies to assist with resolving relationships within Sarcophaga s.l.
Resumo:
Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.
Resumo:
近年来,分子生物学技术与方法被越来越多地应用于有害赤潮研究。其中,单细胞PCR方法是对难以室内培养的有害赤潮藻种进行遗传特征研究的一项重要技术。本实验尝试建立微藻的单细胞PCR方法,并将其应用于鳍藻研究。 应用室内培养的亚历山大藻,研究了微藻的单细胞PCR方法,并对藻细胞的固定和保存方法进行了比较。结果表明,浮游植物研究中常用的甲醛固定方法只能用于短期保存样品(少于5天),而乙醇固定、鲁格氏液固定、或者在-20℃下冷冻保存的样品,在较长的时间后(60天)仍可以得到比较理想的PCR扩增结果。 应用单细胞PCR方法,对青岛近海采集的鳍藻进行了研究,扩增并测定了包括核糖体大亚基(LSU)rDNA的5’端D1-D2区序列,以及5.8S rDNA和ITS区的部分序列信息。通过分析软件对所得到的鳍藻序列信息与基因库中已知的鳍藻序列信息进行了分析与对比。根据ITS和LSU序列信息构建的系统进化树都显示,本文采集的鳍藻藻种与国外报道的圆形鳍藻聚为一支,初步确定采集的鳍藻应为圆形鳍藻,对该藻种形态学特征的观察也支持这一结果。该藻种部分LSU rDNA序列与欧洲同种鳍藻相似度达到99%,与其它等鳍藻遗传距离在18%-20%之间。测定的ITS区序列与同种圆形鳍藻有62个碱基的差异,与LSU rDNA序列相比,ITS序列变异更大。应用LC-MS方法对该鳍藻的进行了DSP毒素分析,结果未检测到OA或DTX1毒素。 这是我国首次应用单细胞PCR方法对鳍藻开展的研究工作,首次报道了我国鳍藻的核糖体部分序列信息。圆形鳍藻在青岛近海海域是初次报道,显示了单细胞PCR方法在鳍藻研究中的重要意义。
Resumo:
近年来,世界沿海国家有害赤潮发生的频率、规模及危害都有上升趋势,有害赤潮已经成为重要的近海环境问题之一。要有效防范有害赤潮带来的危害效应,建立和发展可靠、有效的赤潮监测手段非常重要。目前,对于赤潮藻种的监测主要依靠显微观察的方法,在实际应用中经常遇到困难。首先,亲缘关系相近的物种在形态上差异很小,如甲藻门亚历山大藻属的一些种类,仅细胞壁上个别甲片的结构有细微差别,并且这些形态学指标还容易受环境条件及生长阶段的影响。另外,这种以形态学为基础的分析方法,分析速度慢、耗时长,对操作人员的要求较高,难以满足浮游植物种群动力学监测“量大、连续”的要求。因此,本研究将分子生物学的技术和方法应用于赤潮监测,力求提高赤潮藻种鉴定的准确性和检测工作的效率。 亚历山大藻是一类重要的有害赤潮藻,该藻属中一些产毒特性差别很大的藻种,单从表形特征难以明确区分,从而限制了基于形态观察的监测技术的应用。本研究中,我们尝试应用分子生物学技术与方法,开展了该藻属藻种分子鉴定和荧光原位杂交检测方法的研究。在亚历山大藻的分子鉴定方面,我们采用了核糖体RNA基因(rDNA)序列分析的方法,首次测定了9株分离自中国沿海的(以及实验室保有的其它两株)亚历山大藻的rDNA序列全长,其中包括核糖体小亚基(SSU)rDNA、大亚基(LSU)rDNA、5.8S rDNA及内转录间隔区(ITS)区序列。序列分析结果显示,这些藻株包含了5种核糖体类型,分别是塔玛复合种亚洲温带(Temperate Asian)核糖体类型(TSC-TA),塔玛复合种西欧(West European)核糖体类型(TSC-WE),相关亚历山大藻(A. affine)核糖体类型(AF),微小亚历山大藻(A. minutum)葡萄牙(Portugal)核糖体类型(M-PO)和微小亚历山大藻新西兰(New Zealand)核糖体类型(M-NZ)。将测获的rDNA序列划分为若干保守性不同的区段,分别进行系统发育分析(结合GenBank数据库中保存的其它亚历山大藻相关序列)。结果显示,LSU rDNA D1-D2区是对该藻属藻种进行分子鉴定和系统发育研究的较好区段。同时,为解决建立亚历山大藻克隆培养的困难,我们应用单细胞rDNA序列分析方法,对亚历山大藻单个细胞直接进行了种类鉴定。结果表明,该方法适用于不同生活史阶段的亚历山大藻。 在亚历山大藻的检测技术方面,我们进一步扩展和完善了针对完整细胞的荧光原位杂交检测方法。首先,通过对不同核糖体类型藻株rDNA序列信息的对比分析,针对各自特异的序列位点,设计了特异性rRNA标记探针。经荧光原位杂交实验检验,实现了对5种核糖体类型亚历山大藻的特异性标记。其中,针对WE、M-PO及M-NZ核糖体型的特异性探针为首次获得,另外两个探针是针对TA和AF核糖体类型rRNA新的位点所设计。同时,对影响探针标记效果的诸多因素进行了分析和探讨。此外,在2007年春季长江口海域赤潮调查中,首次应用特异性核酸探针和荧光原位杂交检测方法,调查了该海域亚历山大藻的丰度。结果表明,在4月4日-4月10日的样品中,亚历山大藻达到了较高的密度,最高密度达到103cells/L。同时发现,实验中样品的保存方法有待改进。随后的研究表明,盐醇固定方法及多聚甲醛/甲醇固定方法,可以较好的保持rRNA不被降解并适宜杂交(至少3个月时间)。 总之,本研究首次测定并分析了11株亚历山大藻(9株分离自中国沿海)的rDNA全序列信息。在此基础上,获得了5种核糖体类型亚历山大藻的特异性rRNA标记探针,其中3种为首次获得。另外,实验证明,单细胞rDNA分析技术和荧光原位杂交检测方法,在自然水体中亚历山大藻的直接鉴定及丰度调查中,均具有良好的应用前景。这一工作为我国近海亚历山大藻的鉴定和检测提供了理论依据和方法学基础,希望对该藻赤潮的监测工作有推动作用。 关键词:亚历山大藻 遗传探针 rRNA rDNA 荧光原位杂交 系统发育
Resumo:
The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub-Unit (SSU) rDNA, partial Large Sub-Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1-5.8S-ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU-ITS-LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida-Cuba, (C1) India, and (C2) Australia.
Resumo:
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kutzing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.
Resumo:
Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIa in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIa is a component of the initiation-competent RNA polymerase Iß complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIa functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.
Resumo:
Nucleotide sequences of the ribosomal DNA (rDNA) internal transcribed spacers (ITS) 1 and 2 and a 1068 bp section of the beta-tubulin gene divided seven designated species of Alternaria into five taxa. Stemphylium botryosum formed a sixth closely related taxon. Isolates of A. linicola possessed an identical ITS sequence to one group of A. solani isolates, and two clusters of A. linicola isolates, revealed from beta-tubulin gene data to show minor variation, were as genetically similar to isolates of A. solani as they were to each other. We suggest, therefore, that A. linicola falls within the species A. solani. Similar results suggest that A. lini falls within the species A. alternata. RAPD analysis of the total genomic DNA from the Alternaria spp. concurred with the nucleotide sequence analyses. An oligonucleotide primer (ALP) was selected from the rDNA ITS1 region of A. linicola/A. solani. PCR with primers ALP and ITS4 (from a conserved region of the rDNA) amplified a c. 536 bp fragment from isolates of A. linicola and A. solani but not from other Alternaria spp. nor from other fungi which may be associated with linseed. These primers amplified an identical fragment, confirmed by Southern hybridization, from DNA released from infected linseed seed and leaf tissues. These primers have the potential to be used also for the detection of A. solani in host tissues.