21 resultados para LPJ
Resumo:
Rapport de stage présenté à la Faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M. Sc.) en criminologie
Resumo:
This data sets contains LPJ-LMfire dynamic global vegetation model output covering Europe and the Mediterranean for the Last Glacial Maximum (LGM; 21 ka) and for a preindustrial control simulation (20th century detrended climate). The netCDF data files are time averages of the final 30 years of the model simulation. Each netCDF file contains four or five variables: fractional cover of 9 plant functional types (PFTs; cover), total fractional coverage of trees (treecover), population density of hunter-gatherers (foragerPD; only for the "people" simulations), fraction of the gridcell burned on 30-year average (burnedf), and vegetation net primary productivity (NPP). The model spatial resolution is 0.5-degrees For the LGM simulations, LPJ-LMfire was driven by the PMIP3 suite of eight GCMs for which LGM climate simulations were available. Also provided in this archive is the result of an LPJ-LMfire run that was forced by the average climate of all GCMs (the "GCM-mean" files), and the average of each of the individual LPJ-LMfire runs over the eight LGM scenarios individually (the "LPJ-mean" files). The model simulations are provided that include the influence of human presence on the landscape (the "people" files), and in a "world without humans" scenario (the "natural" files). Finally this archive contains the preindustrial reference simulation with and without human influence ("PI_reference_people" and "PI_reference_nat", respectively). There are therefore 22 netCDF files in this archive: 8 each of LGM simulations with and without people (total 16) and the "GCM mean" simulation (2 files) and the "LPJ mean" aggregate (2 files), and finally the two preindustrial "control" simulations ("PI"), with and without humans (2 files). In addition to the LPJ-LMfire model output (netCDF files), this archive also contains a table of arboreal pollen percent calculated from pollen samples dated to the LGM at sites throughout (lgmAP.txt), and a table containing the location of archaeological sites dated to the LGM (LGM_archaeological_site_locations.txt).
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L’intervention psychosociale auprès des jeunes vivant en Centre jeunesse est régie par la Loi sur la protection de la jeunesse (LPJ). La posture professionnelle des intervenants s’inscrit à la fois dans une relation d’autorité, renforcée par le cadre institutionnel et les obligations légales, et dans une relation d’aide. Ce mémoire s’est attardé à ce double mandat (réadaptation sociale et relation d'aide) et à son impact sur le lien jeune-éducateur. Le terrain de cette recherche s’est déroulé pendant trois mois dans une unité de réadaptation de Montréal (CJM-IU). L’analyse s’est faite à partir de la rencontre des corpus de données; les récits des jeunes et des éducateurs (entretiens semi-directifs) et l'observation de ce milieu de vie. L’approche utilisée, puisant à la fois dans la tradition ethnographique et dans la phénoménologie, nous a permis de faire émerger l’interprétation et les perceptions qu’ont les jeunes et leurs intervenants sur la question de la relation d’aide et de la relation d’autorité. Les résultats de recherche portent sur les conditions qui favorisent la conciliation ou la polarisation de ces mandats qui peuvent parfois sembler antagonistes. Il a ainsi été possible d’identifier les éléments qui fragilisent l’établissement de liens significatifs et de confiance entre les jeunes et leurs éducateurs ou au contraire les éléments qui les renforcent. Ultimement, les résultats ont permis d’illustrer les embûches à la création d’une alliance thérapeutique en centre de réadaptation pour mineurs et l’impossibilité de sa réalisation dans le contexte actuel.
Resumo:
The 21st century has brought new challenges for forest management at a time when globalization in world trade is increasing and global climate change is becoming increasingly apparent. In addition to various goods and services like food, feed, timber or biofuels being provided to humans, forest ecosystems are a large store of terrestrial carbon and account for a major part of the carbon exchange between the atmosphere and the land surface. Depending on the stage of the ecosystems and/or management regimes, forests can be either sinks, or sources of carbon. At the global scale, rapid economic development and a growing world population have raised much concern over the use of natural resources, especially forest resources. The challenging question is how can the global demands for forest commodities be satisfied in an increasingly globalised economy, and where could they potentially be produced? For this purpose, wood demand estimates need to be integrated in a framework, which is able to adequately handle the competition for land between major land-use options such as residential land or agricultural land. This thesis is organised in accordance with the requirements to integrate the simulation of forest changes based on wood extraction in an existing framework for global land-use modelling called LandSHIFT. Accordingly, the following neuralgic points for research have been identified: (1) a review of existing global-scale economic forest sector models (2) simulation of global wood production under selected scenarios (3) simulation of global vegetation carbon yields and (4) the implementation of a land-use allocation procedure to simulate the impact of wood extraction on forest land-cover. Modelling the spatial dynamics of forests on the global scale requires two important inputs: (1) simulated long-term wood demand data to determine future roundwood harvests in each country and (2) the changes in the spatial distribution of woody biomass stocks to determine how much of the resource is available to satisfy the simulated wood demands. First, three global timber market models are reviewed and compared in order to select a suitable economic model to generate wood demand scenario data for the forest sector in LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) is most suitable for obtaining projections on future roundwood harvests for further study with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to simulate wood demands for the global forestry sector conditional on selected scenarios from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is utilized to simulate the change in potential vegetation carbon stocks for the forested locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit forest inventory data on aboveground biomass to allocate the demands for raw forest products and identify locations of deforestation. Using the previous results as an input, a methodology to simulate the spatial dynamics of forests based on wood extraction is developed within the LandSHIFT framework. The land-use allocation procedure specified in the module translates the country level demands for forest products into woody biomass requirements for forest areas, and allocates these on a five arc minute grid. In a first version, the model assumes only actual conditions through the entire study period and does not explicitly address forest age structure. Although the module is in a very preliminary stage of development, it already captures the effects of important drivers of land-use change like cropland and urban expansion. As a first plausibility test, the module performance is tested under three forest management scenarios. The module succeeds in responding to changing inputs in an expected and consistent manner. The entire methodology is applied in an exemplary scenario analysis for India. A couple of future research priorities need to be addressed, particularly the incorporation of plantation establishments; issue of age structure dynamics; as well as the implementation of a new technology change factor in the GFPM which can allow the specification of substituting raw wood products (especially fuelwood) by other non-wood products.
Resumo:
Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.
Resumo:
Four CO2 concentration inversions and the Global Fire Emissions Database (GFED) versions 2.1 and 3 are used to provide benchmarks for climate-driven modeling of the global land-atmosphere CO2 flux and the contribution of wildfire to this flux. The Land surface Processes and exchanges (LPX) model is introduced. LPX is based on the Lund-Potsdam-Jena Spread and Intensity of FIRE (LPJ-SPITFIRE) model with amended fire probability calculations. LPX omits human ignition sources yet simulates many aspects of global fire adequately. It captures the major features of observed geographic pattern in burnt area and its seasonal timing and the unimodal relationship of burnt area to precipitation. It simulates features of geographic variation in the sign of the interannual correlations of burnt area with antecedent dryness and precipitation. It simulates well the interannual variability of the global total land-atmosphere CO2 flux. There are differences among the global burnt area time series from GFED2.1, GFED3 and LPX, but some features are common to all. GFED3 fire CO2 fluxes account for only about 1/3 of the variation in total CO2 flux during 1997–2005. This relationship appears to be dominated by the strong climatic dependence of deforestation fires. The relationship of LPX-modeled fire CO2 fluxes to total CO2 fluxes is weak. Observed and modeled total CO2 fluxes track the El Niño–Southern Oscillation (ENSO) closely; GFED3 burnt area and global fire CO2 flux track the ENSO much less so. The GFED3 fire CO2 flux-ENSO connection is most prominent for the El Niño of 1997–1998, which produced exceptional burning conditions in several regions, especially equatorial Asia. The sign of the observed relationship between ENSO and fire varies regionally, and LPX captures the broad features of this variation. These complexities underscore the need for process-based modeling to assess the consequences of global change for fire and its implications for the carbon cycle.
Resumo:
In this contribution, we continue our exploration of the factors defining the Mesozoic climatic history. We improve the Earth system model GEOCLIM designed for long term climate and geochemical reconstructions by adding the explicit calculation of the biome dynamics using the LPJ model. The coupled GEOCLIM-LPJ model thus allows the simultaneous calculation of the climate with a 2-D spatial resolution, the coeval atmospheric CO2, and the continental biome distribution. We found that accounting for the climatic role of the continental vegetation dynamics (albedo change, water cycle and surface roughness modulations) strongly affects the reconstructed geological climate. Indeed the calculated partial pressure of atmospheric CO2 over the Mesozoic is twice the value calculated when assuming a uniform constant vegetation. This increase in CO2 is triggered by a global cooling of the continents, itself triggered by a general increase in continental albedo owing to the development of desertic surfaces. This cooling reduces the CO2 consumption through silicate weathering, and hence results in a compensating increase in the atmospheric CO2 pressure. This study demonstrates that the impact of land plants on climate and hence on atmospheric CO2 is as important as their geochemical effect through the enhancement of chemical weathering of the continental surface. Our GEOCLIM-LPJ simulations also define a climatic baseline for the Mesozoic, around which exceptionally cool and warm events can be identified.
Resumo:
In order to investigate the potential role of vegetation changes in megafaunal extinctions during the later part of the last glacial stage and early Holocene (42–10 ka BP), the palaeovegetation of northern Eurasia and Alaska was simulated using the LPJ-GUESS dynamic vegetation model. Palaeoclimatic driving data were derived from simulations made for 22 time slices using the Hadley Centre Unified Model. Modelled annual net primary productivity (aNPP) of a series of plant functional types (PFTs) is mapped for selected time slices and summarised for major geographical regions for all time slices. Strong canonical correlations are demonstrated between model outputs and pollen data compiled for the same period and region. Simulated aNPP values, especially for tree PFTs and for a mesophilous herb PFT, provide evidence of the structure and productivity of last glacial vegetation. The mesophilous herb PFT aNPP is higher in many areas during the glacial than at present or during the early Holocene. Glacial stage vegetation, whilst open and largely treeless in much of Europe, thus had a higher capacity to support large vertebrate herbivore populations than did early Holocene vegetation. A marked and rapid decrease in aNPP of mesophilous herbs began shortly after the Last Glacial Maximum, especially in western Eurasia. This is likely implicated in extinction of several large herbivorous mammals during the latter part of the glacial stage and the transition to the Holocene.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
A process-based fire regime model (SPITFIRE) has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.
Resumo:
Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.
Resumo:
Rapid changes in atmospheric methane (CH4), temperature and precipitation are documented by Greenland ice core data both for glacial times (the so called Dansgaard-Oeschger (D-O) events) as well as for a cooling event in the early Holocene (the 8.2 kyr event). The onsets of D-O warm events are paralleled by abrupt increases in CH4 by up to 250 ppb in a few decades. Vice versa, the 8.2 kyr event is accompanied by an intermittent decrease in CH4 of about 80 ppb over 150 yr. The abrupt CH4 changes are thought to mainly originate from source emission variations in tropical and boreal wet ecosystems, but complex process oriented bottom-up model estimates of the changes in these ecosystems during rapid climate changes are still missing. Here we present simulations of CH4 emissions from northern peatlands with the LPJ-Bern dynamic global vegetation model. The model represents CH4 production and oxidation in soils and transport by ebullition, through plant aerenchyma, and by diffusion. Parameters are tuned to represent site emission data as well as inversion-based estimates of northern wetland emissions. The model is forced with climate input data from freshwater hosing experiments using the NCAR CSM1.4 climate model to simulate an abrupt cooling event. A concentration reduction of ~10 ppb is simulated per degree K change of mean northern hemispheric surface temperature in peatlands. Peatland emissions are equally sensitive to both changes in temperature and in precipitation. If simulated changes are taken as an analogy to the 8.2 kyr event, boreal peatland emissions alone could only explain 23 of the 80 ppb decline in atmospheric methane concentration. This points to a significant contribution to source changes from low latitude and tropical wetlands to this event.