991 resultados para LOW-ACCUMULATION SHELF
Resumo:
The OMEX core CD110 W90, retrieved from the Douro Mud Patch (DMP) off the River Douro in the north of Portugal, records the period since the beginning of Little Ice Age (LIA). The core chronology is based upon the data attributes for Pb-210, Cs-137 and a C-14 dating from a level near the core base. Geochemical, granulometric, microfaunal (benthic foraminifera) and compositional data suggest the occurrence of precipitation changes which may have been, at least partially, influenced by the North Atlantic Oscillation (NAO), that contributes to the regulation of the ocean-atmosphere dynamics in the North Atlantic. Southwesterly Atlantic storm track is associated with the negative phases of the NAO, when the Azores High is anomalously weak, higher oceanographic hydrodynamism, downwelling events and increased rainfall generally occurs. Prevalence of these characteristics during the LIA left a record that corresponds to phases of major floods. During these phases the DMP received a higher contribution of relatively coarse-grained terrigenous sediments, enriched in quartz particles, which diluted the contribution of other minerals, as indicated by reduced concentrations of several lithogenic chemical elements such as: Al, As, Ba, Ce, Co, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Rb, Sc, Sn, Th, V and Y. The presence of biogenic carbonate particles also underwent dilution, as revealed by the smaller abundance of foraminifera and correlative lower concentrations of Ca and Sr. During this period, the DMP also received an increased contribution of organic matter, indicated by higher values of lignin remains and a benthic foraminifera high productivity index, or BFHP, which gave rise to early diagenetic changes with pyrite formation. Since the beginning of the 20th century this contribution diminished, probably due to several drier periods and the impact of human activities in the river basins, e.g. construction of dams, or, on the littoral areas, construction of hard-engineering structures and sand extraction activities. During the first half of the 20th century mainly positive phases of the NAO prevailed, caused by the above normal strengthening of the subtropical high pressure centre of the Azores and the deepening of the low pressure centre in Iceland. These phases may have contributed to the reduction in the supply of both terrigenous sediments and organic matter from shallow water to the DMP. During the positive phases of the NAO, sedimentation became finer. The development of mining and industrial activities during the 20th century is marked, in this core, by higher concentrations of Pb. Furthermore, the erosion of heaps resulting from wolfram exploitation leaves its signature as a peak of W concentrations recorded in the sediments of the DMP deposited between the 1960s and the 1990s. Wolfram exploitation was an important activity in the middle part of the 20th century, particularly during the period of the Second World War. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
A series of ice cores from sites with different snow-accumulation rates across Law Dome, East Antarctica, was investigated for methanesulphonic acid (MSA) movement. The precipitation at these sites (up to 35 km apart) is influenced by the same air masses, the principal difference being the accumulation rate. At the low-accumulation-rate W20k site (0.17 in ice equivalent), MSA was completely relocated from the summer to winter layer. Moderate movement was observed at the intermediate-accumulation-rate site (0.7 in ice equivalent), Dome Summit South (DSS), while there was no evidence of movement at the high-accumulation-rate DE08 site (1.4 in ice equivalent). The main DSS record of MSA covered the epoch AD 1727-2000 and was used to investigate temporal post-depositional changes. Co-deposition of MSA and sea-salt ions was observed of the surface layers, outside of the main summer MSA peak, which complicates interpretation of these peaks as evidence of movement in deeper layers. A seasonal study of the 273 year DSS record revealed MSA migration predominantly from summer into autumn (in the up-core direction), but this migration was suppressed during the Tambora (1815) and unknown (1809) volcanic eruption period, and enhanced during an epoch (1770-1800) with high summer nitrate levels. A complex interaction between the gradients in nss-sulphate, nitrate and sea salts (which are influenced by accumulation rate) is believed to control the rate and extent of movement of MSA.
Resumo:
Drilling on the Iberia Abyssal Plain during Ocean Drilling Program Leg 173 allowed us to recover Upper Cretaceous through Paleocene sediments at Sites 1068 and 1069 and only upper Paleocene sediments at Site 1067, which expands considerably the Upper Cretaceous to Paleocene record for this region. Of these three sites, Site 1068 recovered uppermost Cretaceous sediments as well as the most complete Paleocene record, whereas Site 1067 yielded only uppermost Paleocene sediments (Zone CP8). Site 1069 provided a rather complete upper Campanian through Maastrichtian section but a discontinuous Paleocene record. After a detailed calcareous nannofossil biostratigraphy was documented in distribution charts, we calculated mass accumulation rates for Holes 1068A and 1069A. Sediments in Hole 1068A apparently record the final stages of burial of a high basement block by turbidity flows. Accumulation rates through the Upper Cretaceous indicate relatively high rates, 0.95 g/cm**2/k.y., but may be unreliable because of the lack of datum points and/or possible hiatuses. Accumulation rates in the Paleocene section of Hole 1068A fluctuated every few million years from lower (~0.35 g/cm**2/k.y.) to higher rates (~0.85 g/cm**2/k.y.) until the latest Paleocene, when rates increased to an average of ~2.0 g/cm**2/k.y. Mass accumulation rates for the Upper Cretaceous in Hole 1069A indicate a steady rate of ~0.60 g/cm**2/k.y. from 75 to 72 Ma. There may have been one or more hiatuses between 72 and 68 Ma (combined Zone CC24 through Subzone CC25b), as indicated by the very low accumulation rate of 0.15 g/cm**2/k.y. The Paleocene section of Hole 1069A does not show the same continuous record, which may result from fluctuations in the carbonate compensation depth and poor recovery (average = 40%). Zones CP4 and CP5 are missing within a barren interval; this and numerous other barren intervals affect the precision of the nannofossil zonation and calculation of mass accumulation rates. However, in spite of these missing zones, mass accumulation rates do not seem to indicate the presence of hiatuses as the rates for this barren interval average ~1.0 g/cm**2/k.y. This study set out to test the hypothesis that a reliable biostratigraphic record could be constructed from sediments derived from turbidity flows deposited below the carbonate compensation depth. As illustrated here, not only could a reliable biostratigraphic record be determined from these sediments, but sedimentation and mass accumulation rates could also be determined, allowing inferences to be drawn concerning the sedimentary history of this passive margin. The reliability of this record is confirmed by independent verification by the establishment of a magnetostratigraphy for the same cores.
Resumo:
Elevated regions in the central parts of ocean basins are excellent for study of accumulation of eolian material. The mass-accumulation rates of this sediment component appear to reflect changes in the influx of volcanic materials through the Early Cretaceous to Recent history of Deep Sea Drilling Project Site 463, on the Mid-Pacific Mountains. Four distinct episodes of eolian accumulation occurred during the Cretaceous: two periods of moderate accumulation, averaging about 0.2 to 0.3 g/cm**2/10**3 yr, 67 to 70.5 m.y. ago and 91 to 108 m.y. ago; a period of low accumulation, approximately 0.03 g/cm**2/10**3 yr, 70.5 to 90 m.y. ago; and a period of high accumulation, about 0.9 g/cm**2/10**3 yr, 109 to 117 m.y. ago (bottom of the hole). Much of the Cenozoic section is missing from Site 463. Upper Miocene to Recent sediments record an upward increase in accumulation rates, from less than 0.01 to about 0.044 g/cm**2/10**3 yr. The late Pliocene-Pleistocene peak may reflect the change to glacial-wind regimes, as well as an increase in volcanic source materials.
Resumo:
The mass-accumulation rate and grain size of the total eolian component of North Pacific pelagic clays at Deep Sea Drilling Project Sites 576 and 578 have been used to evaluate changes in eolian sedimentation and the intensity of atmospheric circulation that have occurred during the past 70 m.y. Eolian deposition, an indicator of source area aridity, was low in the Paleocene, Eocene, and Oligocene, apparently reflecting the humid environments of that time as well as the lack of glacial erosion products. A general increase in eoiian accumulation in the Miocene apparently reflects the relative increase in global aridity during the latter part of the Cenozoic. A dramatic increase in eolian accumulation rates in the Pliocene reflects the increased aridity and availability of glacial erosion products associated with Northern Hemisphere glaciation 2.5 m.y. ago. Eolian grain size, an indicator of wind intensity, suggests that Late Cretaceous wind strength was comparable to present-day wind strength. A sharp decrease in eolian grain size across the Paleocene/Eocene boundary is not readily interpreted, but may indicate a significant reduction in the intensity of atmospheric circulation at that time. Fine eolian grain size and low accumulation rates in the Eocene and early Oligocene are in agreement with low early Tertiary thermal gradients and less vigorous atmospheric circulation. Large increases in grain size during the Oligocene, mid-to-late Miocene, and Pliocene appear to be a response to steepening thermal gradients resulting from increasing polar isolation.
Resumo:
Peat and net carbon accumulation rates in two sub-arctic peat plateaus of west-central Canada have been studied through geochemical analyses and accelerator mass spectrometry (AMS) radiocarbon dating. The peatland sites started to develop around 6600-5900 cal. yr BP and the peat plateau stages are characterized by Sphagnum fuscum peat alternating with rootlet layers. The long-term peat and net carbon accumulation rates for both profiles are 0.30-0.31 mm/yr and 12.5-12.7 gC/m**2/yr, respectively. These values reflect very slow peat accumulation (0.04-0.09 mm/yr) and net carbon accumulation (3.7-5.2 gC/m**2/yr) in the top rootlet layers. Extensive AMS radiocarbon dating of one profile shows that accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are up to six times higher and net carbon accumulation rates up to four times higher in S. fuscum than in rootlet stages. Local fires represented by charcoal remains in some of the rootlet layers result in very low accumulation rates. High C/N ratios throughout most of the peat profiles suggest low degrees of decomposition due to stable permafrost conditions. Hence, original peat accretion has remained largely unaltered, except in the initial stages of peatland development when permafrost was not yet present.
Resumo:
The pentadentate H(3)bhci [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-cis-inistol] and its bifunctionalized analogue H(3)bhci-glu-H [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-5-glutaramido-cis-inositol] were synthesized, and their coordination chemistry was investigated with inactive rhenium, with no carrier added Re-188 and with carrier added Re-186. The neutral Re(V) complexes [ReO-(bhci)] and [ReO(bhci-glu-H)] are formed in good yields starting from [ReOCl3(P(C6H5)(3))(2)] or in quantitative yield directly from [(ReO4)-Re-186/188](-) in aqueous solution by reduction with Sn(II) or Sn(0). The X-ray structures of [ReO(bhci)] and [ReO(bhci-glu-H)] were elucidated revealing pentadentate side on coordination of the ligands to the Re=O core. The basic cyclohexane frame adopts a chair form in the case of [ReO(bhci)] and a twisted boat form in the case of [ReO(bhci-glu-H)]. [ReO(bhci)] crystallizes in the monoclinic space group C2/c with a = 27.425(3), b = 14.185(1), c = 19.047(2) Angstrom, and beta = 103.64(2)degrees and [ReO(bhci-glu-H)] in the monoclinic space group P2(1)/c with a = 13.056(3), b = 10.180(1), c = 22.378(5) Angstrom and beta = 98.205(9)degrees Both Re-188 complexes are stable in human serum for at least 3 days without decomposition. After injection into mice, [ReO(bhci-glu)](-) is readily excreted through the intestines, while [ReO(bhci)] is excreted by intestines, liver, and the kidneys. TLC investigations of the urine showed exclusively the complexes [ReO(bhci-glu-H)] and [ReO(bhci)], respectively, and no decomposition products. For derivatization of antibodies, the carboxylic group of [ReO(bhci-glu-H)] was activated with N-hydroxysuccinimide, which required unusually vigorous reaction conditions (heating). The anti colon cancer antibody mAb-35 [IgG and F(ab')(2) fragment] was labeled with [(ReO)-Re-186/188(bhci-glu)] to a specific activity of up to 1.5 mCi/mg (55 MBq/mg) with full retention of immunoreactivity. Labeling yields followed pseudo-first-order kinetics in antibody concentration with the ratio of rates between aminolysis and hydrolysis being about 2. Biodistributions of Re-186-labeled intact mAb-35 as well as of its F(ab')(2) fragment in tumor-bearing nude mice revealed good uptake by the tumor with only low accumulation of radioactivity in normal tissue.
Resumo:
The objective of this work was to list potential candidate bee species for environmental risk assessment (ERA) of genetically modified (GM) cotton and to identify the most suited bee species for this task, according to their abundance and geographical distribution. Field inventories of bee on cotton flowers were performed in the states of Bahia and Mato Grosso, and in Distrito Federal, Brazil. During a 344 hour sampling, 3,470 bees from 74 species were recovered, at eight sites. Apis mellifera dominated the bee assemblages at all sites. Sampling at two sites that received no insecticide application was sufficient to identify the three most common and geographically widespread wild species: Paratrigona lineata, Melissoptila cnecomola, and Trigona spinipes, which could be useful indicators of pollination services in the ERA. Indirect ordination of common wild species revealed that insecticides reduced the number of native bee species and that interannual variation in bee assemblages may be low. Accumulation curves of rare bee species did not saturate, as expected in tropical and megadiverse regions. Species-based approaches are limited to analyze negative impacts of GM cotton on pollinator biological diversity. The accumulation rate of rare bee species, however, may be useful for evaluating possible negative effects of GM cotton on bee diversity.
Resumo:
A network of twenty stakes was set up on Johnsons Glacier in order to determine its dynamics. During the austral summers from 1994-95 to 1997-98, we estimated surface velocities, mass balances and ice thickness variations. Horizontal velocity increased dow nstream from 1 m a- 1 near the ice divides to 40 m a- 1 near the ice terminus. The accumulation zone showed low accumulation rates (maximum of 0,6 m a- 1 (ice)), whereas in the lower part of the glacier, ablation rates were 4,3 m a- 1 (ice). Over the 3-year study period, both in the accumulation and ablation zones, we detected a reduction in the ice surface level ranging from 2 to 10 m from the annual ve rt ical velocities and ice-thinning data, the mass balance was obtained and compared with the mass balance field values, resulting in similar estimates. Flux values were calculated using cross-section data and horizontal velocities, and compared with the results obtained by means of mass balance and ice thinning data using the continuity equation. The two methods gave similar results.
Resumo:
The stratigraphic subdivision and correlation of dune deposits is difficult, especially when age datings are not available. A better understanding of the controls on texture and composition of eolian sands is necessary to interpret ancient eolian sediments. The Imbituba-Jaguaruna coastal zone (Southern Brazil, 28 degrees-29 degrees S) stands out due to its four well-preserved Late Pleistocene (eolian generation 1) to Holocene eolian units (eolian generations 2, 3, and 4). In this study, we evaluate the grain-size and heavy-mineral characteristics of the Imbituba-Jaguartma eolian units through statistical analysis of hundreds of sediment samples. Grain-size parameters and heavy-mineral content allow us to distinguish the Pleistocene from the Holocene units. The grain size displays a pattern of fining and better sorting from generation 1 (older) to 4 (younger), whereas the content of mechanically stable (dense and hard) heavy minerals decreases from eolian generation 1 to 4. The variation in grain size and heavy-mineral content records shifts in the origin and balance (input versus output) of eolian sediment supply attributable mainly to relative sea-level changes. Dunefields submitted to relative sea-level lowstand conditions (eolian generation 1) are characterized by lower accumulation rates and intense post-depositional dissection by fluvial incision. Low accumulation rates favor deflation in the eolian system, which promotes concentration of denser and stable heavy minerals (increase of ZTR index) as well as coarsening of eolian sands. Dissection involves the selective removal of finer sediments and less dense heavy minerals to the coastal source area. Under a high rate of relative sea-level rise and transgression (eolian generation 2), coastal erosion prevents deflation through high input of sediments to the coastal eolian source. This condition favors dunefield growth. Coastal erosion feeds sand from local sources to the eolian system. including sands from previous dunefields (eolian generation 1) and from drowned incised valleys. Therefore, dunefields corresponding to transgressive phases inherit the grain-size and heavy-mineral characteristics of previous dunefields, leading to selective enrichment of finer sands and lighter minerals. Eolian generations 3 and 4 developed during a regressive-progradational phase (Holocene relative sea level highstand). The high rate of sediment supply during the highstand phase prevents deflation. The lack of coastal erosion favors sediment supply from distal sources (fluvial sediments rich in unstable heavy minerals). Thus, dunefields of transgressive and highstand systems tracts may be distinguished from dunefields of the lowstand systems tract through high rates of accumulation (low deflation) in the former. The sediment source of the transgressive dunefields (high input of previously deposited coastal sands) differs from that of the highstand dunefields (high input of fluvial distal sands). Based on this case study, we propose a general framework for the relation between relative sea level, sediment supply and the texture and mineralogy of eolian sediments deposited in siliciclastic wet coastal zones similar to the Imbituba-Jaguaruna coast (C) 2009 Elsevier B.V. All rights reserved.
Holocene fires in East Amazonia (Caraja`s), new evidences, chronology and relation with paleoclimate
Resumo:
Past studies have evidenced the presence of charcoal in soils and lacustrine sediments of Amazonia region and suggested occurrences of widespread fires during the Middle Holocene. However, the available records do not indicate the changes in fire regime with enough time resolution. We quantified charcoal fragments in lacustrine sediments in a lake of North Carajas plateau in East Amazonia (5 degrees 50`-6 degrees 35`S and 49 degrees 30`-52 degrees 00`W). The charcoal quantification was compared to other sediment proxies, allowing a connection between paleofires and climate changes. Large variations in sediment characteristics led to distinct stages of sedimentation. From 11,800 (base of CSN 93/4) to 4750 cal yr B.P., low accumulation rates of organic matter are observed. Between 7600 cal yr B.P. (base of CSN 93/3 core) and 4750 cal yr B.P., this initial phase of sedimentation is characterized by low chlorophyll derivate accumulation rates and high accumulation rates of Botryococcus braunii, an alga resistant to episodic drought. The first phase of sedimentation would therefore correspond to, a low take level and a drier climate than today. Large biomass burning events occurred between 7450 cal yr B.P. and 4750 cal yr B.P., as indicated by the high charcoal particle concentration. From 4750 cal yr B.P. to 2800 cal yr B.P., accumulation rates of charcoal particles decreased, and the accumulation rate of chlorophyll derivate was low. From 2800 cal yr B.P. to 1300 cal yr B.P., the charcoal accumulation rates reached their lowest values in the core and a rapid increase in lacustrine production is evidenced by the increase in chlorophyll derivates and carbon accumulation rate. From 1300 cal yr B.P. to the last century, the charcoal accumulation rates increased. During the most recent period, the record is characterized by high accumulation rates of chlorophyll derivates while the charcoal particle accumulation rate decreased. This region is still unaffected by the current increase of anthropogenic fires. (c) 2007 Elsevier B.V. All rights reserved.