991 resultados para LONG WAVES
Resumo:
Solitary waves have been found in an adiabatic compressible atmosphere which, in ambient state, has winds and temperature gradient, generalizing our earlier results for the isothermal atmosphere. Explicit results are obtained for the special case of linear temperature and linear wind distributions in the undisturbed conditions. An important result of the study is that the number of possible critical speeds of the flow depends crucially on whether the maximum Richardson number (which is variable in the present example) is greater or less than 1/4.
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.
Resumo:
The available experimental results have shown that in time-periodic motion the rheology of fluid mud displays complex viscoelastic behaviour. Based on the measured rheology of fluid mud from two field sites, we study the interaction of water waves and fluid mud by a two-layered model in which the water above is assumed to be inviscid and the mud below is viscoelastic. As the fluid-mud layer in shallow seas is usually much thinner than the water layer above, the sharp contrast of scales enables an approximate analytical theory for the interaction between fluid mud and small-amplitude waves with a narrow frequency band. It is shown that at the leading order and within a short distance of a few wavelengths, wave pressure from above forces mud motion below. Over a Much longer distance, waves are modified by the accumulative dissipation in mud. At the next order, infragravity waves owing to convective inertia (or radiation stresses) are affected indirectly by mud motion through the slow modulation of the short waves. Quantitative predictions are made for mud samples of several concentrations and from two different field sites.
Resumo:
Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.
Resumo:
This doctoral thesis originates from an observational incongruence between the perennial aims and aspirations of economic endeavour and actually recorded outcomes, which frequently seem contrary to those intended and of a recurrent, cyclical type. The research hypothesizes parallel movement between unstable business environments through time, as expressed by periodically fluctuating levels of economic activity, and the precipitation rates of industrial production companies. A major problem arose from the need to provide theoretical and empirical cohesion from the conflicting, partial and fragmented interpretations of several hundred historians and economists, without which the research question would remain unanswerable. An attempt to discover a master cycle, or superimposition theorem, failed, but was replaced by minute analysis of both the concept of cycles and their underlying data-bases. A novel technique of congregational analysis emerged, resulting in an integrated matrix of numerical history. Two centuries of industrial revolution history in England and Wales was then explored and recomposed for the first time in a single account of change, thereby providing a factual basis for the matrix. The accompanying history of the Birmingham area provided the context of research into the failure rates and longevities of firms in the city's staple metal industries. Sample specific results are obtained for company longevities in the Birmingham area. Some novel presentational forms are deployed for results of a postal questionnaire to surviving firms. Practical demonstration of the new index of national economic activity (INEA) in relation to company insolvencies leads to conclusions and suggestions for further applications of research into the tempo of change, substantial Appendices support the thesis and provide a compendium of information covering immediately contiguous domains.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
Interfacial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.
Resumo:
Water waves generated by landslides were long menace in certain localities and the study of this phenomenon were carried out at an accelerated rate in the last decades. Nevertheless, the phase of wave creation was found to be very complex. As such, a numerical model based on Boussinesq equations was used to describe water waves generated by local disturbance. This numerical model takes in account the vertical acceleration of the particles and considers higher orders derivate terms previously neglected by Boussinesq, so that in the generation zone, this model can support high relative amplitude of waves.
Resumo:
In the present work we use an asymptotic approach to obtain the long wave equations. The shallow water equation is put as a function of an external parameter that is a measure of both the spatial scales anisotropy and the fast to slow time ratio. The values given to the external parameters are consistent with those computed using typical values of the perturbations in tropical dynamics. Asymptotically, the model converge toward the long wave model. Thus, it is possible to go toward the long wave approximation through intermediate realizable states. With this approach, the resonant nonlinear wave interactions are studied. To simplify, the reduced dynamics of a single resonant triad is used for some selected equatorial trios. It was verified by both theoretical and numerical results that the nonlinear energy exchange period increases smoothly as we move toward the long wave approach. The magnitude of the energy exchanges is also modified, but in this case depends on the particular triad used and also on the initial energy partition among the triad components. Some implications of the results for the tropical dynamics are disccussed. In particular, we discuss the implications of the results for El Nĩo and the Madden-Julian in connection with other scales of time and spatial variability. © Published under licence by IOP Publishing Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.
Resumo:
This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and, the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.