988 resultados para LOCALLY EFFICIENT ESTIMATION
Resumo:
In biostatistical applications, interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed monitoring time, then the data is described by the well known singly-censored current status model, also known as interval censored data, case I. We extend this current status model by allowing the presence of a time-dependent process, which is partly observed and allowing C to depend on T through the observed part of this time-dependent process. Because of the high dimension of the covariate process, no globally efficient estimators exist with a good practical performance at moderate sample sizes. We follow the approach of Robins and Rotnitzky (1992) by modeling the censoring variable, given the time-variable and the covariate-process, i.e., the missingness process, under the restriction that it satisfied coarsening at random. We propose a generalization of the simple current status estimator of the distribution of T and of smooth functionals of the distribution of T, which is based on an estimate of the missingness. In this estimator the covariates enter only through the estimate of the missingness process. Due to the coarsening at random assumption, the estimator has the interesting property that if we estimate the missingness process more nonparametrically, then we improve its efficiency. We show that by local estimation of an optimal model or optimal function of the covariates for the missingness process, the generalized current status estimator for smooth functionals become locally efficient; meaning it is efficient if the right model or covariate is consistently estimated and it is consistent and asymptotically normal in general. Estimation of the optimal model requires estimation of the conditional distribution of T, given the covariates. Any (prior) knowledge of this conditional distribution can be used at this stage without any risk of losing root-n consistency. We also propose locally efficient one step estimators. Finally, we show some simulation results.
Resumo:
Estimation for bivariate right censored data is a problem that has had much study over the past 15 years. In this paper we propose a new class of estimators for the bivariate survival function based on locally efficient estimation. We introduce the locally efficient estimator for bivariate right censored data, present an asymptotic theorem, present the results of simulation studies and perform a brief data analysis illustrating the use of the locally efficient estimator.
Resumo:
In many applications the observed data can be viewed as a censored high dimensional full data random variable X. By the curve of dimensionality it is typically not possible to construct estimators that are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for construction of one-step estimators that are efficient at a chosen submodel of the full-data model, are still well behaved off this submodel and can be chosen to always improve on a given initial estimator. These one-step estimators rely on good estimators of the censoring mechanism and thus will require a parametric or semiparametric model for the censoring mechanism. We present a general theorem that provides a template for proving the desired asymptotic results. We illustrate the general one-step estimation methods by constructing locally efficient one-step estimators of marginal distributions and regression parameters with right-censored data, current status data and bivariate right-censored data, in all models allowing the presence of time-dependent covariates. The conditions of the asymptotics theorem are rigorously verified in one of the examples and the key condition of the general theorem is verified for all examples.
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.
Resumo:
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pulmonary airways are subdivided into conducting and gas-exchanging airways. An acinus is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X-ray micro-CT or synchrotron radiation-based X-rays tomographic microscopy. The entrances of the acini were counted in three-dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60-day-old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume.
Resumo:
This paper presents calculations of semiparametric efficiency bounds for quantile treatment effects parameters when se1ection to treatment is based on observable characteristics. The paper also presents three estimation procedures forthese parameters, alI ofwhich have two steps: a nonparametric estimation and a computation ofthe difference between the solutions of two distinct minimization problems. Root-N consistency, asymptotic normality, and the achievement ofthe semiparametric efficiency bound is shown for one ofthe three estimators. In the final part ofthe paper, an empirical application to a job training program reveals the importance of heterogeneous treatment effects, showing that for this program the effects are concentrated in the upper quantiles ofthe earnings distribution.
Resumo:
In recent years, researchers in the health and social sciences have become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of an exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Natural direct and indirect effects are of particular interest as they generally combine to produce the total effect of the exposure and therefore provide insight on the mechanism by which it operates to produce the outcome. A semiparametric theory has recently been proposed to make inferences about marginal mean natural direct and indirect effects in observational studies (Tchetgen Tchetgen and Shpitser, 2011), which delivers multiply robust locally efficient estimators of the marginal direct and indirect effects, and thus generalizes previous results for total effects to the mediation setting. In this paper we extend the new theory to handle a setting in which a parametric model for the natural direct (indirect) effect within levels of pre-exposure variables is specified and the model for the observed data likelihood is otherwise unrestricted. We show that estimation is generally not feasible in this model because of the curse of dimensionality associated with the required estimation of auxiliary conditional densities or expectations, given high-dimensional covariates. We thus consider multiply robust estimation and propose a more general model which assumes a subset but not all of several working models holds.
Resumo:
We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.
Resumo:
Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is arguably the most common objective of experimental and observational studies in the health and social sciences, in recent years, investigators have also become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of the exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Although powerful semiparametric methodologies have been developed to analyze observational studies, that produce double robust and highly efficient estimates of the marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, this paper develops a general semiparametric framework for obtaining inferences about so-called marginal natural direct and indirect causal effects, while appropriately accounting for a large number of pre-exposure confounding factors for the exposure and the mediator variables. Our analytic framework is particularly appealing, because it gives new insights on issues of efficiency and robustness in the context of mediation analysis. In particular, we propose new multiply robust locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a novel double robust sensitivity analysis framework for the assumption of ignorability of the mediator variable.
Resumo:
In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.
Resumo:
This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components.
Resumo:
We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small worlds that includes declustered networks and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.