995 resultados para LOCAL-ANESTHETICS
Resumo:
Chemically modified electrodes (CMEs) prepared by the dispersion of metal oxide particles on a glassy carbon (GC) substrate greatly enhance the voltammetric response and amperometric detection of local anesthetics following liquid chromatography (LC). The enhancement is more pronounced with the GC electrodes dispersed by the metal oxides of higher oxidation states (+3, +4) and for the species exhibiting relatively slow electrode kinetics under given conditions. With an applied potential of 1.2 V (vs. SCE), LC amperometric detection of the analytes at the alpha-alumina modified GC surface gives detection limits 2-5 times lower than those obtained at the bare electrode. The metal oxide-dispersed electrodes display significant improvement in sensitivity, and selectivity and indicate excellent preparation reproducibility and performance stability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Introduction: One of the most common strategies for pain control during and after surgical procedures is the use of local anesthetics. Prolonged analgesia can be safely achieved with drug delivery systems suitably chosen for each local anesthetic agent.Areas covered: This review considers drug delivery formulations of local anesthetics designed to prolong the anesthetic effect and decrease toxicity. The topics comprise the main drug delivery carrier systems (liposomes, biopolymers, and cyclodextrins) for infiltrative administration of local anesthetics. A chronological review of the literature is presented, including details of formulations as well as the advantages and pitfalls of each carrier system. The review also highlights pharmacokinetic data on such formulations, and gives an overview of the clinical studies published so far concerning pain control in medicine and dentistry.Expert opinion: The design of novel drug delivery systems for local anesthetics must focus on how to achieve higher uploads of the anesthetic into the carrier, and how to sustain its release. This comprehensive review should be useful to provide the reader with the current state-of-art regarding drug delivery formulations for local anesthetics and their possible clinical applications.
Resumo:
Background: Premature infants, who have to spend the first week of their lives in neonatal intensive care units (NICUs), experience pain and stress in numerous cases, and they are exposed to many invasive interventions. The studies have shown that uncontrolled pain experienced during early life has negative and long-term side effects, such as distress, and such experiences negatively affect the development of the central nervous system Objectives: The purpose of the study was to examine the effects of touching on infant pain perception and the effects of eutectic mixture of local anesthetic (EMLA) on the reduction of pain. Patients and Methods: Data for the study were collected between March and August 2012 from the neonatal clinic of a university hospital located in eastern Turkey. The population of the study consisted of premature infants who were undergoing treatment, completed the first month and who were approved for Hepatitis B vaccine. The study consisted of two experimental groups and one control group. Information forms, intervention follow-up forms, and Premature Infant Pain Profile (PIPP) were used to collect the data. EMLA cream was applied on the vastus lateralis muscles of the first experimental group before the vaccination. The second experimental group was vaccinated by imitation (placebo), without a needle tip or medicine. Vaccination was carried out using instrumental touch in this group. A routine vaccination was applied in the control group. Results: Mean pain scores of the group to which EMLA was applied were lower in a statistically significant way (P < 0.05) compared to the pain scores of the other groups. Moreover, it was determined that even though invasive intervention was not applied to the newborns, the touching caused them to feel pain just as in the placebo group (P < 0.005). Conclusions: The results demonstrated that EMLA was an effective method for reducing pain in premature newborns, and the use of instrumental touch for invasive intervention stimulated the pain perception in the newborns.
Resumo:
TWIK-related K+ channel TREK1, a background leak K+ channel, has been strongly implicated as the target of several general and local anesthetics. Here, using the whole-cell and single-channel patch-clamp technique, we investigated the effect of lidocaine, a local anesthetic, on the human (h) TREK1 channel heterologously expressed in human embryonic kidney 293 cells by an adenoviral-mediated expression system. Lidocaine, at clinical concentrations, produced reversible, concentration-dependent inhibition of hTREK1 current, with IC50 value of 180 mu M, by reducing the single-channel open probability and stabilizing the closed state. We have identified a strategically placed unique aromatic couplet (Tyr352 and Phe355) in the vicinity of the protein kinase A phosphorylation site, Ser348, in the C-terminal domain (CTD) of hTREK1, that is critical for the action of lidocaine. Furthermore, the phosphorylation state of Ser348 was found to have a regulatory role in lidocaine-mediated inhibition of hTREK1. It is interesting that we observed strong intersubunit negative cooperativity (Hill coefficient = 0.49) and half-of-sites saturation binding stoichiometry (half-reaction order) for the binding of lidocaine to hTREK1. Studies with the heterodimer of wild-type (wt)-hTREK1 and Delta 119 C-terminal deletion mutant (hTREK1(wt)-Delta 119) revealed that single CTD of hTREK1 was capable of mediating partial inhibition by lidocaine, but complete inhibition necessitates the cooperative interaction between both the CTDs upon binding of lidocaine. Based on our observations, we propose a model that explains the unique kinetics and provides a plausible paradigm for the inhibitory action of lidocaine on hTREK1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND AND OBJECTIVES: Nerve blocks using local anesthetics are widely used. High volumes are usually injected, which may predispose patients to associated adverse events. Introduction of ultrasound guidance facilitates the reduction of volume, but the minimal effective volume is unknown. In this study, we estimated the 50% effective dose (ED50) and 95% effective dose (ED95) volume of 1% mepivacaine relative to the cross-sectional area of the nerve for an adequate sensory block. METHODS: To reduce the number of healthy volunteers, we used a volume reduction protocol using the up-and-down procedure according to the Dixon average method. The ulnar nerve was scanned at the proximal forearm, and the cross-sectional area was measured by ultrasound. In the first volunteer, a volume of 0.4 mL/mm of nerve cross-sectional area was injected under ultrasound guidance in close proximity to and around the nerve using a multiple injection technique. The volume in the next volunteer was reduced by 0.04 mL/mm in case of complete blockade and augmented by the same amount in case of incomplete sensory blockade within 20 mins. After 3 up-and-down cycles, ED50 and ED95 were estimated. Volunteers and physicians performing the block were blinded to the volume used. RESULTS: A total 17 of volunteers were investigated. The ED50 volume was 0.08 mL/mm (SD, 0.01 mL/mm), and the ED95 volume was 0.11 mL/mm (SD, 0.03 mL/mm). The mean cross-sectional area of the nerves was 6.2 mm (1.0 mm). CONCLUSIONS: Based on the ultrasound measured cross-sectional area and using ultrasound guidance, a mean volume of 0.7 mL represents the ED95 dose of 1% mepivacaine to block the ulnar nerve at the proximal forearm.
Resumo:
BACKGROUND: Can the application of local anesthetics (Neural Therapy, NT) alone durably improve pain symptoms in referred patients with chronic and refractory pain? If the application of local anesthetics does lead to an improvement that far exceeds the duration of action of local anesthetics, we will postulate that a vicious circle of pain in the reflex arcs has been disrupted (hypothesis). METHODS: Case series design. We exclusively used procaine or lidocaine. The inclusion criteria were severe pain and chronic duration of more than three months, pain unresponsive to conventional medical measures, written referral from physicians or doctors of chiropractic explicitly to NT. Patients with improvement of pain who started on additional therapy during the study period for a reason other than pain were excluded in order to avoid a potential bias. Treatment success was measured after one year follow-up using the outcome measures of pain and analgesics intake. RESULTS: 280 chronic pain patients were included; the most common reason for referral was back pain. The average number of consultations per patient was 9.2 in the first year (median 8.0). After one year, in 60 patients pain was unchanged, 52 patients reported a slight improvement, 126 were considerably better, and 41 pain-free. At the same time, 74.1 % of the patients who took analgesics before starting NT needed less or no more analgesics at all. No adverse effects or complications were observed. CONCLUSIONS: The good long-term results of the targeted therapeutic local anesthesia (NT) in the most problematic group of chronic pain patients (unresponsive to all evidence based conventional treatment options) indicate that a vicious circle has been broken. The specific contribution of the intervention to these results cannot be determined. The low costs of local anesthetics, the small number of consultations needed, the reduced intake of analgesics, and the lack of adverse effects also suggest the practicality and cost-effectiveness of this kind of treatment. Controlled trials to evaluate the true effect of NT are needed.
Resumo:
The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-α-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation ≈40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to ≈60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain–interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on l-type calcium channels.
Resumo:
Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.
Resumo:
Tramadol and lidocaine, used as analgesic and local anesthetic in surgery, are partly excreted by kidney. For the first time, we developed a simple and sensitive method, based on capillary electrophoresis with electrochemiluminescence (ECL) detection by end column mode without joint to monitor tramadol and lidocaine in urine. To eliminate the influence of ionic strength of urine sample, analytes were extracted by ether. Tripropylamine (TPA) was used as internal standard. ne recoveries of tramadol and lidocaine were between 94% and 97% at different levels. The method exhibited the linear range for the tramadol and lidocaine from 1.0 X 10(-7) to 1.0 X 10(-4) mol/L with correlation efficient of 0.998. The relative standard deviation (RSD) was 2.9% and 2.7% (n = 8) for tramadol and lidocaine, respectively. The limit of detection (LOD) was 6.0 x 10(-8) mol/L and 4.5 x 10(-8), mol/L (S/N = 3) for tramadol and lidocaine, respectively. The application for detecting tramadol and lidocaine in urine of patients showed that the method was valuable in clinical and biochemical laboratories for detecting tramadol, lidocaine and other tertiary amine pharmaceuticals for various purpose, such as metabolism investigation.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária