932 resultados para LOAD DISPATCH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文提出一个计算网损微增率的新途径。应用网络拓扑方法得到的网损修正值的直接数学表达式,不仅可利用系统潮流进行直接计算,而且有明确的物理概念,可用于实时经济调度。文中给出了计算方法和实例。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage stability control problem has become an important concern for utilities transmitting power over long distances. This paper presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage stability of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed fuzzy logic control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and some IEEE standard test systems. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a 24 - node equivalent EHV system of part of Indian southern grid and IEEE New England 39-bus system are presented for illustration purposes. The proposed Fuzzy-Expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of curtailing the number of control actions using fuzzy expert approach for voltage/reactive power dispatch. It presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage profile of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed Fuzzy Logic Control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and modified IEEE-30 bus system. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a modified IEEE-30 bus test system and a 205-node equivalent EHV system a part of Indian southern grid are presented for illustration purposes. The proposed fuzzy-expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups with few number of controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.

Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.

This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.

Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.

We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.

Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.

To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.

Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.

To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles are a key prospect for future transportation. A large penetration of electric vehicles has the potential to reduce the global fossil fuel consumption and hence the greenhouse gas emissions and air pollution. However, the additional stochastic loads imposed by plug-in electric vehicles will possibly introduce significant changes to existing load profiles. In his paper, electric vehicles loads are integrated into an 5-unit system using a non-convex dynamic dispatch model. The actual infrastructure characteristics including valve-point effects, load balance constrains and transmission loss have been included in the model. Multiple load profiles are comparatively studied and compared in terms of economic and environmental impacts in order o identify patterns to charge properly. The study as expected shows ha off-peak charging is the best scenario with respect to using less fuels and producing less emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advantages of high energy efficiency and economic benefit promote the wide application of combined heat and power system (CHP) based microgrid. Firstly, a mathematical model of the CHP based microgrid is developed. Then, a cost function for the coordination of heat and electric load is proposed. Finally, an optimal dispatch model is developed to achieve the economical and coordinated operation of the CHP based microgrid system. Simulation results verify effectiveness of the proposed dispatch model, which is a powerful tool for the energy management of CHP based microgrid with renewable energy resources.