936 resultados para LINEAR MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Matemática, Estatística, pela Universidade Nova de Lisboa, faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models firstly with the generalized linear model concept, then by localizing. Distances between individuals are the only predictor information needed to fit these models. Therefore they are applicable to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. Models can be fitted and analysed with the R package dbstats, which implements several distancebased prediction methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on judgment and decision making presents a confusing picture of human abilities. For example, much research has emphasized the dysfunctional aspects of judgmental heuristics, and yet, other findings suggest that these can be highly effective. A further line of research has modeled judgment as resulting from as if linear models. This paper illuminates the distinctions in these approaches by providing a common analytical framework based on the central theoretical premise that understanding human performance requires specifying how characteristics of the decision rules people use interact with the demands of the tasks they face. Our work synthesizes the analytical tools of lens model research with novel methodology developed to specify the effectiveness of heuristics in different environments and allows direct comparisons between the different approaches. We illustrate with both theoretical analyses and simulations. We further link our results to the empirical literature by a meta-analysis of lens model studies and estimate both human andheuristic performance in the same tasks. Our results highlight the trade-off betweenlinear models and heuristics. Whereas the former are cognitively demanding, the latterare simple to use. However, they require knowledge and thus maps of when andwhich heuristic to employ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of research methods requires a systematic review of their status. This study focuses on the use of Hierarchical Linear Modeling methods in psychiatric research. Evaluation includes 207 documents published until 2007, included and indexed in the ISI Web of Knowledge databases; analyses focuses on the 194 articles in the sample. Bibliometric methods are used to describe the publications patterns. Results indicate a growing interest in applying the models and an establishment of methods after 2000. Both Lotka"s and Bradford"s distributions are adjusted to the data.