997 resultados para LIF RECEPTOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) expression in the uterus is essential for embryo implantation in mice. Here we describe the spatial and temporal regulation of LIF signaling in vivo by using tissues isolated from uteri on different days over the implantation period. During this time, LIF receptors are expressed predominantly in the luminal epithelium (LE) of the uterus. Isolated epithelium responds to LIF by phosphorylation and nuclear translocation of signal transducer and activator of transcription (Stat) 3, but not by an increase in mitogen-activated protein kinase levels. The related cytokines Il-6, ciliary neurotrophic factor, as well as epidermal growth factor, do not activate Stat3, although epidermal growth factor stimulates mitogen-activated protein kinase. In vivo Stat3 activation is induced by LIF alone, resulting in the localization of Stat3 specifically to the nuclei of the LE coinciding with the onset of uterine receptivity. The responsiveness of the LE to LIF is regulated temporally, with Stat activation being restricted to day 4 of pregnancy despite the presence of constant levels of LIF receptor throughout the preimplantation period. Uterine receptivity is therefore under dual control and is regulated by both the onset of LIF expression in the endometrial glands and the release from inhibition of receptor function in the LE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uterine expression of leukemia inhibitory factor (LIF) is essential for embryo implantation in the mouse. Here, we describe the expression of LIF, related members of this group of cytokines, oncostatin M and ciliary neurotrophic factor, and the LIF receptor beta and glycoprotein gp130 in normal human tissues and in the endometrium of fertile women. Our results show that LIF is the only one of these factors expressed at detectable levels in the endometrium of women of proven fertility. LIF expression is restricted to the endometrial glands during the secretory/postovulatory phase but is not present in the endometrium during the proliferative/preovulatory phase. The LIF receptor beta is expressed during the proliferative and secretory phases of the cycle and is restricted to the luminal epithelium. The associated signal-transducing component of the LIF receptor, gp130, is also expressed in both the luminal and glandular epithelium throughout the cycle. These results suggest that uterine expression of LIF in humans, like mice, may have a role in regulating embryo implantation, possibly through an autocrine/paracrine interaction between LIF and its receptor at the luminal epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) promotes differentiated cell function in several systems. We recently reported LIF and LIF receptor expression in human fetal pituitary corticotrophs in vivo and demonstrated LIF stimulation of adrenocorticotrophin (ACTH) transcription in vitro, suggesting a role for LIF in corticotroph development. We therefore assessed the action of LIF on proliferating murine corticotroph cells (AtT20). LIF impairs proliferation of AtT20 cells (25% reduction versus control, P < 0.03), while simultaneously enhancing ACTH secretion (2-fold, P < 0.001) and augmenting ACTH responsiveness to corticotrophin-releasing hormone (CRH) action (4-fold, P < 0.001). This attenuation of cell growth is due to a block of cell cycle progression from G1 into S phase, as measured by flow cytometric analysis (24 +/- 0.8 versus 11.57 +/- 1.5, P < 0.001). Using bromodeoxyuridine incorporation assays, loss of cells in S phase was confirmed (25 +/- 0.08 to 9.4 +/- 1.4, P < 0.008). In contrast, CRH induced the G2/M phase (3.6 +/- 0.2 to 15.4 +/- 3, P < 0.001). This effect was blunted by LIF (P < 0.001 versus CRH alone). Cyclin A mRNA levels, which decline in S phase, were stimulated 3.5-fold by LIF and markedly suppressed by CRH. These results indicate a LIF-induced cell cycle block occurring at G1/S in corticotroph cells. Thus, LIF reduces proliferation, enhances ACTH secretion, and potentiates effects of CRH on ACTH secretion while blocking effects of CRH on the cell cycle. Responses of these three markers of differentiated corticotroph function indicate LIF to be a differentiation factor for pituitary corticotroph cells by preferential phenotypic switching from proliferative to synthetic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bonesialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model. © 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction and activator of transcription 3 (Stat3) is activated by cytokines and growth factors in many cancers. Persistent activation of Stat3 plays important role in cell growth, survival, and transformation through regulating its targeted genes. Previously, we found that mice with a deletion of the G protein-coupled receptor, family C, group 5, member a (Gprc5a) gene develop lung tumors indicating that Gprc5a is a tumor suppressor. In the present study, we examined he mechanism of Gprc5a-mediated tumor suppression. We found that epithelial cells from Gprc5a knockout mouse lung (Gprc5a-/- cells) survive better in vitro in medium deprived of exogenous growth factors and form more colonies in semi-solid medium than their counterparts from wildtype mice (Gprc5a+/+ cells). The phosphorylation of tyrosine 705 on Stat3 and the expression of Stat3-regulated anti-apoptotic genes Bcl-XL, Cryab, Hapa1a, and Mcl1 were higher in the Gprc5a-/- than in Gprc5a+/+ cells. In addition, their responses to Lif were different; Stat3 activation was persistent by Lif treatment in the Gprc5a-/- cells, but was transient in the Gprc5a+/+ cells. The persistent activation of Stat3 by Lif in Gprc5a-/- cells is due to a decreased level of Socs3 protein, a negative inhibitor of the Lif-Stat3 signaling. Restoration of Socs3 inhibited the persistent Stat3 activation in Gprc5a-/- cells. Lung adenocarcinoma cells isolated from Gprc5a-/- mice also exhibited autocrine Lif-mediated Stat3 activation. Treatment of Gprc5a-/- cells isolated from normal and tumor tissue with AG490, a Stat3 signaling inhibitor, or with dominant negative Stat3(Y705F) increased starvation-induced apoptosis and inhibited anchorage-independent growth. These results suggest that persistent Stat3 activation increased the survival and transformation of Gprc5a-/- lung cells. Thus, the tumor suppressive effects of Gprc5a are mediated, at least in part, by inhibition of Stat3 signaling through regulating the stability of the Socs3 protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that enclogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligo-dendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cupri-zone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last few years have seen dramatic advances in genomics, including the discovery of a large number of non-coding and antisense transcripts. This has revolutionised our understanding of multifaceted transcript structures found within gene loci and their roles in the regulation of development, neurogenesis and other complex processes. The recent and continuing surge of knowledge has prompted researchers to reassess and further dissect gene loci. The ghrelin gene (GHRL) gives rise to preproghrelin, which in turn produces ghrelin, a 28 amino acid peptide hormone that acts via the ghrelin receptor (growth hormone secretagogue receptor/GHSR 1a). Ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, and cancer development. A truncated receptor splice variant, GHSR 1b, does not bind ghrelin, but dimerises with GHSR 1a, and may act as a dominant negative receptor. The gene products of ghrelin and its receptor are frequently overexpressed in human cancer While it is well known that the ghrelin axis (ghrelin and its receptor) plays a range of important functional roles, little is known about the molecular structure and regulation of the ghrelin gene (GHRL) and ghrelin receptor gene (GHSR). This thesis reports the re-annotation of the ghrelin gene, discovery of alternative 5’ exons and transcription start sites, as well as the description of a number of novel splice variants, including isoforms with a putative signal peptide. We also describe the discovery and characterisation of a ghrelin antisense gene (GHRLOS), and the discovery and expression of a ghrelin receptor (growth hormone secretagogue receptor/GHSR) antisense gene (GHSR-OS). We have identified numerous ghrelin-derived transcripts, including variants with extended 5' untranslated regions and putative secreted obestatin and C-ghrelin transcripts. These transcripts initiate from novel first exons, exon -1, exon 0 and a 5' extended 1, with multiple transcription start sites. We used comparative genomics to identify, and RT-PCR to experimentally verify, that the proximal exon 0 and 5' extended exon 1 are transcribed in the mouse ghrelin gene, which suggests the mouse and human proximal first exon architecture is conserved. We have identified numerous novel antisense transcripts in the ghrelin locus. A candidate non-coding endogenous natural antisense gene (GHRLOS) was cloned and demonstrates very low expression levels in the stomach and high levels in the thymus, testis and brain - all major tissues of non-coding RNA expression. Next, we examined if transcription occurs in the antisense orientation to the ghrelin receptor gene, GHSR. A novel gene (GHSR-OS) on the opposite strand of intron 1 of the GHSR gene was identified and characterised using strand-specific RT-PCR and rapid amplification of cDNA ends (RACE). GHSR-OS is differentially expressed and a candidate non-coding RNA gene. In summary, this study has characterised the ghrelin and ghrelin receptor loci and demonstrated natural antisense transcripts to ghrelin and its receptor. Our preliminary work shows that the ghrelin axis generates a broad and complex transcriptional repertoire. This study provides the basis for detailed functional studies of the the ghrelin and GHSR loci and future studies will be needed to further unravel the function, diagnostic and therapeutic potential of the ghrelin axis.