235 resultados para LICHENS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Canoparmelia texana epiphytic lichenized fungi was used to monitor atmospheric pollution in the Sao Paulo metropolitan region, SP, Brazil. The cluster analysis applied to the element concentration values confirmed the site groups of different levels of pollution due to industrial and vehicular emissions. In the distribution maps of element concentrations, higher concentrations of Ba and Mn were observed in the vicinity of industries and of a petrochemical complex. The highest concentration of Co found in lichens from the Sao Miguel Paulista site is due to the emissions from a metallurgical processing plant that produces this element. For Br and Zn, the highest concentrations could be associated both to vehicular and industrial emissions. Exploratory analyses revealed that the accumulation of toxic elements in C. texana may be of use in evaluating the human risk of cardiopulmonary mortality due to prolonged exposure to ambient levels of air pollution. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomonitoring study, using transplanted lichens Flavoparmelia caperata, was conducted to assess the indoor air quality in primary schools in urban (Lisbon) and rural (Ponte de Sor) Portuguese sites. The lichens exposure period occurred between April and June 2010 and two types of environments of the primary schools were studied: classrooms and outdoor/courtyard. Afterwards, the lichen samples were processed and analyzed by instrumental neutron activation analysis (INAA) to assess a total of 20 chemical elements. Accumulated elements in the exposed lichens were assessed and enrichment factors (EF) were determined. Indoor and outdoor biomonitoring results were compared to evaluate how biomonitors (as lichens) react at indoor environments and to assess the type of pollutants that are prevalent in those environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 50 years, concern about the loss of lichen diversity associated with forest management and forest fragmentation has led to many studies designed to assess patterns and monitor trends of lichen biodiversity in forests worldwide. However there are surprisingly few studies focusing on the effect of natural disturbance for epiphytic lichens in forest ecosystems and, especially, on how these changes affect the relationships between epiphytic lichens and other organisms. The major goal of this thesis was to characterize and valuate the epiphytic lichens in the Baixo Tamega region (northern Portugal) and to assess its vulnerability to several drivers of change, particularly fire. The study area is located in Aboboreira and Castelo, a mountain area with 105 km2 and a top altitude of approximately 1000 m.a.s.l. In this region, fire is one of the worst natural catastrophes not only because of its high frequency and wide extension but also because of their enormous destructive effects. This thesis has included three case studies that proved the need to develop management and conservation actions for the area. In the first study we assessed the epiphytic lichen diversity in the oak woods of the Aboboreira and Castelo mountains. Results have revealed high diversity value and presence of a lichen community that has suffered general decline throughout Europe. The second study has addressed the impact of fire over epiphytic lichens and community recovering patterns. Results observed along the fire gradient showed that the most common and abundant lichen species establish themselves early in post-fire gradient while “old-growth” associated lichens tend to recover slowly along the same gradient. The third study intended to evaluate the potential use of selected lichen species or groups as biodiversity surrogates, in a scenario of fire-controlled ecological changes. Results showed that the use of epiphytic lichens as surrogates of bryophyte and vascular plant diversity should consider not only species richeness and composition, but also occurrence of disturbing factors, such fire. among the studied groups, lichen genera is the only group that can be used as surrogate of total epiphytic lichen diversity, independently of fire induced changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the European GLORIA project, 12 summits (treeline to nival belt) were inventoried in three regions of Switzerland: two in the Swiss National Park Graubünden and one in Valais. Vascular plants were recorded in all three regions and bryophytes and lichens were recorded only in Valais. On each summit, vegetation and temperature data were sampled using sampling protocols for the GLORIA project (Global Observation Research Initiative in Alpine environment) on large summit sections and in clusters of four 1x1-m quadrats. We observed a general decrease of species richness for all three systematic groups with increasing elevation in the summit sections, but only for vascular plants in the quadrats. In Valais, there was higher species richness for vascular plants than for bryophytes and lichens on the lower summits, but as the decrease in species richness was less pronounced for cryptogams, the latter were more numerous than vascular plants on the highest summit. Vascular species showed a clear shift of the dominant life form with elevation, with chamaephytes replacing hemicryptophytes. Bryophytes and lichens showed a weak trend among the life forms at the summit section scale, but a stronger shift of the dominant forms was seen in the quadrats, with cushion replacing turf bryophytes and crustaceous replacing fruticose lichens. Altogether, these results sustain the temperature-physiographic hypothesis to explain the species richness decrease along the altitudinal gradient: the harsh climatic conditions of the alpine-nival belts act as a filter for species, but the diminishing diversity of microhabitats is also an important factor. Because cryptogams depend more on humidity than temperature and more on smaller microhabitats than vascular plants, the decrease of species richness is more gradual with elevation for bryophytes and lichens.