993 resultados para LI-FRAUMENI SYNDROME
Resumo:
Li-Fraumeni Syndrome (LFS) is a hereditary cancer syndrome which predisposes individuals to cancer beginning in childhood. These risks are spread across a lifetime, from early childhood to adulthood. Mutations in the p53 tumor suppressor gene are known to cause the majority of cases of LFS. The risk for early onset cancer in individuals with Li-Fraumeni Syndrome is high. Studies have shown that individuals with LFS have a 90% lifetime cancer risk. Children under 18 have up to a 15% chance of cancer development. Effectiveness of cancer screening and management in individuals with Li-Fraumeni Syndrome is unclear. Screening for LFS-associated cancers has not been shown to reduce mortality. Due to the lack of effective screening techniques for childhood cancers, institutions vary with regard to their policies on testing children for LFS. There are currently no national guidelines regarding predictive testing of children who are at risk of inheriting LFS. No studies have looked at parental attitudes towards predictive p53 genetic testing in their children. This was a cross-sectional pilot study aimed at describing these attitudes. We identified individuals whose children were at risk for inheriting p53 genetic mutations. These individuals were provided with surveys which included validated measures addressing attitudes and beliefs towards genetic testing. The questionnaire included qualitative and quantitative measures. Six individuals completed and returned the questionnaire with a response rate of 28.57%. In general, respondents agreed that parents should have the opportunity to obtain p53 genetic testing for their child. Parents vary in regard to their attitudes towards who should be involved in the decision making process and at what time and under what considerations testing should occur. Testing motivations cited most important by respondents included family history, planning for the future and health management. Concern for insurance genetic discrimination was cited as the most important “con” to genetic testing. Although limited by a poor response rate, this study can give health care practitioners insight into testing attitudes and beliefs of families considering pediatric genetic testing.
Resumo:
Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^
Resumo:
Li- Fraumeni Syndrome (LFS) is a rare autosomal dominant hereditary cancer syndrome caused by mutations in the TP53 gene that predisposes individuals to a wide variety of cancers, including breast cancer, soft tissue sarcomas, osteosarcomas, brain tumors, and adrenocortical carcinomas. Individuals found to carry germline mutations in TP53 have a 90% lifetime cancer risk, with a 20% chance to develop cancer under the age of 20. Despite the significant risk of childhood cancer, predictive testing for unaffected minors at risk for LFS historically has not been recommended, largely due to the lack of available and effective screening for the types of cancers involved. A recently developed screening protocol suggests an advantage to identifying and screening children at risk for LFS and we therefore hypothesized that this alongside with the availability of new screening modalities may substantiate a shift in recommendations for predictive genetic testing in minors at risk for LFS. We aimed to describe current screening recommendations that genetic counselors provide to this population as well as explore factors that may have influenced genetic counselors attitude and practice in regards to this issue. An online survey was emailed to members of the National Society of Genetic Counselors (NSGC) and the Canadian Association of Genetic Counsellors (CAGC). Of an estimated 1000 eligible participants, 172 completed surveys that were analyzed. Genetic counselors in this study were more likely to support predictive genetic testing for this population as the minor aged (p
Resumo:
Missense mutations in the p53 tumor-suppressor gene are the most common alterations of p53 in somatic tumors and in patients with Li-Fraumeni syndrome. p53 missense mutations occur in the DNA binding region and disrupt the ability of p53 to activate transcription. In vitro studies have shown that some p53 missense mutants have a gain-of-function or dominant-negative activity. ^ The p53 175 Arg-to-His (p53 R175H) mutation in humans has been shown to have dominant-negative and gain-of-function properties in vitro. This mutation is observed in the germline of individuals with Li-Fraumeni syndrome. To accurately model Li-Fraumeni syndrome and to examine the mechanistic nature of a gain-of-function missense mutation on in vivo tumorigenesis, we generated and characterized a mouse with the corresponding mutation, p53 R172H. p53R172H homozygous and heterozygous mice developed similar tumor spectra and survival curves as p53 −/− and p53+/− mice, respectively. However, tumors in p53+/R172H mice metastasized to various organs with high frequency, suggesting a gain-of-function phenotype by p53R172H in vivo. Mouse embryonic fibroblasts (MEFs) from p53R172H mice also showed gain-of-function phenotypes in cell proliferation, DNA synthesis, and transformation potential, while cells from p53+/− and p53−/− mice did not. ^ To mechanistically characterize the gain-of-function phenotype of the p53R172H mutant, the role of p53 family members, p63 and p73, was analyzed. Disruption of p63 and p73 by siRNAs in p53 −/− MEFs increased transformation potential and reinitiated DNA synthesis to levels observed in p53R172H/R172H cells. Additionally, p63 and p73 were bound and functionally inactivated by p53R172H in metastatic p53 R172H tumor-derived cell lines, indicating a role for the p53 family members in the gain-of-function phenotype. This study provides in vivo evidence for the gain-of-function effect of p53 missense mutations and more accurately models the Li-Fraumeni syndrome. ^
Resumo:
We investigated whether mutations in the p53 tumor suppressor gene alter UV sensitivity and/or repair of UV-induced DNA damage in primary human skin fibroblasts from patients with Li-Fraumeni syndrome, heterozygous for mutations in one allele of the p53 gene (p53 wt/mut) and sublines expressing only mutant p53 (p53 mut). The p53 mut cells were more resistant than the p53 wt/mut cells to UV cytotoxicity and exhibited less UV-induced apoptosis. DNA repair analysis revealed reduced removal of cyclobutane pyrimidine dimers from overall genomic DNA in vivo in p53 mut cells compared with p53 wt/mut or normal cells. However, p53 mut cells retained the ability to preferentially repair damage in the transcribed strands of expressed genes (transcription-coupled repair). These results suggest that loss of p53 function may lead to greater genomic instability by reducing the efficiency of DNA repair but that cellular resistance to DNA-damaging agents may be enhanced through elimination of apoptosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes are associated to germline TP53 mutations, and are characterized by the development of central nervous system tumors, sarcomas, adrenocortical carcinomas, and other early-onset tumors. Due to the high frequency of breast cancer in LFS/LFL families, these syndromes clinically overlap with hereditary breast cancer (HBC). Germline point mutations in BRCA1, BRCA2, and TP53 genes are associated with high risk of breast cancer. Large rearrangements involving these genes are also implicated in the HBC phenotype. Methods: We have screened DNA copy number changes by MLPA on BRCA1, BRCA2, and TP53 genes in 23 breast cancer patients with a clinical diagnosis consistent with LFS/LFL; most of these families also met the clinical criteria for other HBC syndromes. Results: We found no DNA copy number alterations in the BRCA2 and TP53 genes, but we detected in one patient a 36.4 Kb BRCA1 microdeletion, confirmed and further mapped by array-CGH, encompassing exons 9-19. Breakpoints sequencing analysis suggests that this rearrangement was mediated by flanking Alu sequences. Conclusion: This is the first description of a germline intragenic BRCA1 deletion in a breast cancer patient with a family history consistent with both LFL and HBC syndromes. Our results show that large rearrangements in these known cancer predisposition genes occur, but are not a frequent cause of cancer susceptibility.
Resumo:
Pedigree analysis of certain families with a high incidence of tumors suggests a genetic predisposition to cancer. Li and Fraumeni described a familial cancer syndrome that is characterized by multiple primary tumors, early age of onset, and marked variation in tumor type. Williams and Strong (1) demonstrated that at least 7% of childhood soft tissue sarcoma patients had family histories that is readily explained by a highly penetrant autosomal dominant gene. To characterize the mechanism for genetic predisposition to many tumor types in these families, we have studied genetic alterations in fibroblasts, a target tissue from patients with the Li-Fraumeni Syndrome (LFS).^ We have observed spontaneous changes in initially normal dermal fibroblasts from LFS patients as they are cultured in vitro. The cells acquire an altered morphology, chromosomal anomalies, and anchorage-independent growth. This aberrant behavior of fibroblasts from LFS patients had never been observed in fibroblasts from normal donors. In addition to these phenotypic alterations, patient fibroblasts spontaneously immortalize by 50 population doublings (pd) in culture; unlike controls that remain normal and senesce by 30-35 (2). At 50 pd, immortal fibroblasts from two patients were found to be susceptible to tumorigenic transformation by an activated T24 H-ras oncogene (3). Approximately 80% of the oncogene expressing transfectants were capable of forming tumors in nude mice within 2-3 weeks. p53 has been previously associated with immortalization of cells in culture and cooperation with ras in transfection assays. Therefore, patients' fibroblast and lymphocyte derived DNA was tested for point mutations in p53. It was shown that LFS patients inherited certain point mutations in one of the two p53 alleles (4). Further studies on the above LFS immortal fibroblasts have demonstrated loss of the remaining p53 allele concomitant with escape from senescence. While the loss of the second allele correlates with immortalization it is not sufficient to transformation by an activated H-ras or N-ras oncogene. These immortal fibroblasts are resistant to tumorigenic transformation by v-abl, v-src, c-neu or v-mos oncogene; implying that additional steps are required in the tumorigenic progression of LFS patients' fibroblasts.^ References. (1) Williams et al., J. Natl. Cancer Inst. 79:1213, 1987. (2) Bischoff et al., Cancer Res. 50:7979, 1990. (3) Bischoff et al., Oncogene 6:183, 1991. (4) Malkin et al., Science 250:1233, 1990. ^
Resumo:
Hereditary syndromes are responsible for 10 % of gynaecologic cancers, among which hereditary breastovarian cancer and hereditary non-polyposis colon cancer syndromes, known as HBOC and Lynch syndromes respectively, present the highest relative risk. The latter predisposes to endometrial cancer and both contribute to ovarian cancer. Cowden syndrome-related endometrial cancer and the increased risk of ovarian, uterine and cervical cancers associated with Peutz-Jeghers syndrome, are also demonstrated, while Li-Fraumeni syndrome patients are prone to develop ovarian and endometrial cancers. Despite these syndromes’ susceptibility to gynaecologic cancers being consensual, it is still not clear whether these tumours have any epidemiologic, clinical, pathologic or imaging specific features that could allow any of the intervening physicians to raise suspicion of a hereditary syndrome in patients without known genetic risk. Moreover, controversy exists regarding both screening and surveillance schemes. Our literature review provides an updated perspective on the evidence-based specific features of tumours related to each of these syndromes as well as on the most accepted screening and surveillance guidelines. In addition, some illustrative cases are presented.
Resumo:
Rare germline mutations in TP53 (17p13.1) cause a highly penetrant predisposition to a specific spectrum of early cancers, defining the Li-Fraumeni Syndrome (LFS). A germline mutation at codon 337 (p.Arg337His, c1010G>A) is found in about 0.3% of the population of Southern Brazil. This mutation is associated with partially penetrant LFS traits and is found in the germline of patients with early cancers of the LFS spectrum unselected for familial his- tory. To characterize the extended haplotypes carrying the mutation, we have genotyped 9 short tandem repeats on chromosome 17p in 12 trios of Brazilian p.Arg337His carriers. Results confirm that all share a common ancestor haplotype of Caucasian/Portuguese-Ibe- ric origin, distant in about 72–84 generations (2000 years assuming a 25 years intergenera- tional distance) and thus pre-dating European migration to Brazil. So far, the founder p. Arg337His haplotype has not been detected outside Brazil, with the exception of two resi- dents of Portugal, one of them of Brazilian origin. On the other hand, increased meiotic recombination in p.Arg337His carriers may account for higher than expected haplotype diversity. Further studies comparing haplotypes in populations of Brazil and of other areas of Portuguese migration are needed to understand the historical context of this mutation in Brazil.
Resumo:
BACKGROUND: In high-quality cancer registration systems, about one in eight incident cancers are second primary cancers. This is due to a combination of careful diagnostic ascertainment, shared genetic determinants, shared exposure to environmental factors and consequences of treatment for first cancer. METHODS: We used data derived from the Swiss population-based cancer Registries of Vaud and Neuchâtel, including 885,000 inhabitants. RESULTS: Among 107,238 (52% males) first cancers occurring between 1976 and 2010, a total of 126 second sarcomas were observed through active and passive follow-up versus 68.2 expected, corresponding to a standardized incidence ratio (SIR) of 1.85 (95 % CI 1.5-2.2). Significant excess sarcoma risks were observed after skin melanoma (SIR = 3.0), breast cancer (2.2), corpus uteri (2.7), testicular (7.5), thyroid cancer (4.2), Hodgkin lymphoma (5.7) and leukemias (4.0). For breast cancer, the SIR was 3.4 ≥5 years after sarcoma diagnosis. CONCLUSIONS: The common denominator of these neoplasms is the utilization of radiotherapy in their management. Some sarcomas following breast cancer may be due to shared genetic components (i.e., in the Li-Fraumeni syndrome), as well as possibly to shared environmental factors, with sarcomas, including overweight, selected dietary and reproductive factors which are, however, too little defined for any quantitative risk assessment.
Resumo:
Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.
Resumo:
Germline mutations in TP53 gene are associated with Li-Fraumeni syndrome (LFS) and its variants Li-Fraumeni-like (LFL). They predispose carriers to a wide variety of early onset tumors. In Brazil, there is a high frequency of a germline mutation in this gene (NC_000017.9: c.1010G>A; p.R337H) in Southern and Southeastern regions, due to a founder effect. It is estimated to be present in 0,3% ofthe local population, but only few families have been detected. Due to this significant divergence, the purpose of this study was to verify the effectiveness of wider criteria for detection of these individuals. Herein, clinical criteria were established, DNA samples were collected, analyzed by Restriction Fragment Length Polymorphism (RFLP) and sequenced. Thus, assessing the prevalence of this mutation in families with multiple cases of cancer. Based on our proposed criteria, one out of 31 patients (3,22%) was found to carry p.R337H mutation. The patient developed ductal invasive breast cancer at age 47, invasive adenocarcinoma of the lung at age 48 and soft-tissue sarcoma at age 49. In addition, an extensive cancer family history was referred, atypical for LFS, including a case of Ewing’s sarcoma. These outcomes indicate that the proposed criteria may detect probable carriers who did not fit previous LFS criteria. Nevertheless, additional studies, which might include a larger number of families and more stringent parameters, will be useful to improve screening sensibility