971 resultados para LEVEL JET EAST


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South American low level jet (SALLJ) of the Eastern Andes is investigated with Regional Climate Model version 3 (RegCM3) simulations during the 2002-2003 austral summer using two convective parameterizations (Grell and Emanuel). The simulated SALLJ is compared with the special observations of SALLJEX (SALLJ Experiment). Both the Grell and Emanuel schemes adequately simulate the low level flow over South America. However, there are some intensity differences. Due to the larger (smaller) convective activity, the Emanuel (Grell) scheme simulates more intense (weaker) low level wind than analysis in the tropics and subtropics. The objectives criteria of Sugahara (SJ) and Bonner (BJ) were used for LLJ identification. When applied to the observations, both criteria suggest a larger frequency of the SALLJ in Santa Cruz, followed by Mariscal, Trinidad and Asuncin. In Mariscal and Asuncin, the diurnal cycle indicates that SJ occurs mainly at 12 UTCs (morning), while the BJ criterion presents the SALLJ as more homogenously distributed. The concentration into two of the four-times-a-day observations does not allow conclusions about the diurnal cycle in Santa Cruz and Trinidad. The simulated wind profiles result in a lower than observed frequency of SALLJ using both the SJ and BJ criteria, with fewer events obtained with the BJ. Due to the stronger simulated winds, the Emanuel scheme produces an equal or greater relative frequency of SALLJ than the Grell scheme. However, the Grell scheme using the SJ criterion simulates the SALLJ diurnal cycle closer to the observed one. Although some discrepancies between observed and simulated mean vertical profiles of the horizontal wind are noted, there is large agreement between the composites of the vertical structure of the SALLJ, especially when the SJ criterion is used with the Grell scheme. On an intraseasonal scale, a larger southward displacement of SALLJ in February and December when compared with January has been noted. The Grell and Emanuel schemes simulated this observed oscillation in the low-level flow. However, the spatial pattern and intensity of rainfall and circulation anomalies simulated by the Grell scheme are closer to the analyses than those obtained with the Emanuel scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the inter-El Nio (EN) variability on the moisture availability over Southeastern South America (SESA) is investigated. Also, an automatic tracking scheme was used to analyze the extratropical cyclones properties (system density - SD and central pressure - CP) in this region. During the austral summer period from 1977-2000, the differences for the upper-level wave train anomaly composites seem to determine the rainfall composite differences. In fact, the positive rainfall anomalies over most of the SESA domain during the strong EN events are explained by an upper-level cyclonic center over the tropics and an anticyclonic center over the eastern subtropical area. This pattern seems to contribute to upward vertical motion at 500 hPa and reinforcement of the meridional moisture transport from the equatorial Atlantic Ocean and western Amazon basin to the SESA region. These features may contribute to the positive SD and negative CP anomalies explaining part of the positive rainfall anomalies found there. On the other hand, negative rainfall anomalies are located in the northern part of SESA for the weak EN years when compared to those for the strong events. Also, positive anomalies are found in the southern part, albeit less intense. It was associated with the weakening of the meridional moisture transport from the tropics to the SESA that seems have to contributed with smaller SD and CP anomalies over the most part of subtropics, when compared to the strong EN years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] This work examines the main sources of moisture over Central Brazil and La Plata Basin during the year through a new Lagrangian diagnosis method which identifies the humidity contributions to the moisture budget over a region. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along back-trajectories for the previous 10 d. The origin of all air masses residing over each region was tracked during a period of 5 years (2000-2004). These regions were selected because they coincide with two centers of action of a known dipole precipitation variability mode observed in different temporal scales (from intra seasonal up to inter decadal timescales) and are related to the climatic variability of the South American Monsoon System. The results suggested the importance of the tropical south Atlantic as a moisture source for Central Brazil, and of recycling for La Plata basin. It seems that the Tropical South Atlantic plays an important role as a moisture source for Central Brazil and La Plata basin along the year, particularly during the austral summer. The north Atlantic is also an additional source for both regions during the austral summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-level jet (LLJ) over the Indian region, which is most prominent during the monsoon (June-September) season, has been studied with a general circulation model (GCM). The role of African orography in modulating this jet is the focus of this article. The presence o African orography intensifies the cross-equatorial flow. Contrary to previous modelling Studies we find that cross-equatorial flow occurs even in the absence of African orography, though this flow is muc weaker even when the Indian monsoon rainfall is high. However, the location of the meridional jet near the equator in the Somali region is linked to the Indian monsoon rainfall rather than to the land-sea contrast over Somalia. Also, the presence of African orography, and not the strength of the Indian monsoon, controls the vertical extent of the equatorial meridional wind. In an aqua-planet simulation, the cross-equatorial flow occurs about 30 to the west of the rainfall maximum. Thus, the longitudinal location of the equatorial Somali jet depends upon the occurrence of monsoon heating, but the vertical structure of the jet is on account of the western boundary current in the atmosphere due to the East African highlands under the influence of monsoonal heat source.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Easterly waves (EWs) are prominent features of the intertropical convergence zone (ITCZ), found in both the Atlantic and Pacific during the Northern Hemisphere summer and fall, where they commonly serve as precursors to hurricanes over both basins.Alarge proportion of Atlantic EWs are known to form over Africa, but the origin of EWs over the Caribbean and east Pacific in particular has not been established in detail. In this study reanalyses are used to examine the coherence of the large-scale wave signatures and to obtain track statistics and energy conversion terms for EWs across this region. Regression analysis demonstrates that some EW kinematic structures readily propagate between the Atlantic and east Pacific, with the highest correlations observed across Costa Rica and Panama. Track statistics are consistent with this analysis and suggest that some individual waves are maintained as they pass from the Atlantic into the east Pacific, whereas others are generated locally in the Caribbean and east Pacific. Vortex anomalies associated with the waves are observed on the leeward side of the Sierra Madre, propagating northwestward along the coast, consistent with previous modeling studies of the interactions between zonal flow and EWs with model topography similar to the Sierra Madre. An energetics analysis additionally indicates that the Caribbean low-level jet and its extension into the east Pacific—known as the Papagayo jet—are a source of energy for EWs in the region. Two case studies support these statistics, as well as demonstrate the modulation of EW track and storm development location by the MJO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we present a climatology of the Amazon squall lines (ASLs), between the years 2000 and 2008, using satellite imagery and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses. The ASLs we are interested in are typically formed along the northern coast of Brazil and sometimes propagate for long distances inland. Results show that, on average, an ASL occurs every 2 days. ASLs are more frequent between April and June and less frequent between October and November. The years of 2005 and 2006 showed 25% more cases than the other years. This might be related to an increase of the Atlantic sea surface temperature. Of the total number of ASL cases, 54% propagated less than 170 km, 26% propagated between 170 and 400 km, and 20% propagated more than 400 km. We also studied the occurrence of low level jets (LLJs) associated with the coastal ASLs. Although LLJs are always present in the environment before the formation of the ASL and even on days without ASL cases, important differences were found, mainly related to the LLJ depths. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is an observational study of the large-scale moisture transport over South America, with some analyses on its relation to subtropical rainfall. The concept of aerial rivers is proposed as a framework: it is an analogy between the main pathways of moisture flow in the atmosphere and surface rivers. Opposite to surface rivers, aerial rivers gain (lose) water through evaporation (precipitation). The magnitude of the vertically integrated moisture transport is discharge, and precipitable water is like the mass of the liquid column-multiplied by an equivalent speed it gives discharge. Trade wind flow into Amazonia, and the north/northwesterly flow to the subtropics, east of the Andes, are aerial rivers. Aerial lakes are the sections of a moisture pathway where the flow slows down and broadens, because of diffluence, and becomes deeper, with higher precipitable water. This is the case over Amazonia, downstream of the trade wind confluence. In the dry season, moisture from the aerial lake is transported northeastward, but weaker flow over southern Amazonia heads southward toward the subtropics. Southern Amazonia appears as a source of moisture to this flow. Aerial river discharge to the subtropics is comparable to that of the Amazon River. The variations of the amount of moisture coming from Amazonia have an important effect over the variability of discharge. Correlations between the flow from Amazonia and subtropical rainfall are not strong. However, some months within the set of dry seasons observed showed a strong increase (decrease) occurring together with an important increase (decrease) in subtropical rainfall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Breaking synoptic-scale Rossby waves (RWB) at the tropopause level are central to the daily weather evolution in the extratropics and the subtropics. RWB leads to pronounced meridional transport of heat, moisture, momentum, and chemical constituents. RWB events are manifest as elongated and narrow structures in the tropopause-level potential vorticity (PV) field. A feature-based validation approach is used to assess the representation of Northern Hemisphere RWB in present-day climate simulations carried out with the ECHAM5-HAM climate model at three different resolutions (T42L19, T63L31, and T106L31) against the ERA-40 reanalysis data set. An objective identification algorithm extracts RWB events from the isentropic PV field and allows quantifying the frequency of occurrence of RWB. The biases in the frequency of RWB are then compared to biases in the time mean tropopause-level jet wind speeds. The ECHAM5-HAM model captures the location of the RWB frequency maxima in the Northern Hemisphere at all three resolutions. However, at coarse resolution (T42L19) the overall frequency of RWB, i.e. the frequency averaged over all seasons and the entire hemisphere, is underestimated by 28%.The higher-resolution simulations capture the overall frequency of RWB much better, with a minor difference between T63L31 and T106L31 (frequency errors of −3.5 and 6%, respectively). The number of large-size RWB events is significantly underestimated by the T42L19 experiment and well represented in the T106L31 simulation. On the local scale, however, significant differences to ERA-40 are found in the higher-resolution simulations. These differences are regionally confined and vary with the season. The most striking difference between T106L31 and ERA-40 is that ECHAM5-HAM overestimates the frequency of RWB in the subtropical Atlantic in all seasons except for spring. This bias maximum is accompanied by an equatorward extension of the subtropical westerlies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding of the Atmospheric Boundary Layer (ABL) is imperative in the arena of the monsoon field. Here, the features of the ABL are studied employing Conserved Variable Analysis (CVA) using equivalent potential temperature and humidity. In addition, virtual potential temperature and wind are used during active and weak phases of monsoon. The analysis is carried out utilising the radiosonde observations during the monsoon months for two stations situated in the west coast of India. All these parameters show considerable variations during active and weak monsoon phases in both the stations. The core speed and core height vary with these epochs. The core speed is found to be more than 38 knots in the active monsoon phase around 1.2 km over Trivandrum and around 2 km over Mangalore. But during weak monsoon phase the core wind speed is decreased and core height is elevated over both stations. The wind direction shows an additional along shore component during weak monsoon period. The Convective Boundary Layer (CBL) height shows increase during weak monsoon phase over both stations due to less cloudiness and subsequent insolation. The CBL height during the southwest monsoon is more over Mangalore and is attributed by the orographic lifting in the windward side of the Western Ghats while the influence of the Ghats is less over Trivandrum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characteristics of the monsoon boundary layer are imperative to understand in the perception of the tropical regions. The southwest monsoon is associated with a strong wind in the lower troposphere near 1.5 km and is referred to as Low Level Jet stream (LLJ). The boundary layer structure associated with the LLJ during monsoon can be studied using L-band Ultra High Frequency (UHF) radar. This L-band wind profiler-commonly referred as lower atmospheric wind profiler (LAWP), was installed at NARL, Gadanki. Zonal, meridional and vertical wind components are used to understand the diurnal variation of the wind in the Atmospheric Boundary Layer (ABL) and associated features. From the analysis during non rainy days of the southwest monsoon, it is found that the LLJ has maximum strength during the early morning hours at lower level and the height increases as day progresses. The vertical wind shows the transfer of momentum from the LLJ towards the surface, indicating the sinking motion during the daytime. Vertical gradient of the wind shear shows the intensity of clear air turbulence is moderate and no severe clear air turbulence is noticed during the monsoon period

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study mainly intends to investigate the meteorological aspects associated with the formation of mud banks along southwest coast of India. During the formation of mud bank, the prominent monsoon organized convection is located in the equatorial region and relatively low clouding over Indian mainland. The wind core of the low level jet stream passes through the monsoon organized convection. When the monsoon organized convection is in the equatorial region, the low level wind over the southwest coast of India is parallel to the coastline and toward south. This wind along the coast gives rise to Ekman mass transport away from the coastline and subsequently formation of mud bank, if the high wind stress persists continuously for three or more days. As a result of the increased alongshore wind stress, the coastal upwelling increases. An increase in chlorophyll-a concentration and total chlorophyll can also be seen associated with mudbank formation